168 lines
5.3 KiB
Python
168 lines
5.3 KiB
Python
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
#
|
|||
|
|
|||
|
from openpyxl import load_workbook, Workbook
|
|||
|
import sys
|
|||
|
from io import BytesIO
|
|||
|
|
|||
|
from rag.nlp import find_codec
|
|||
|
|
|||
|
import pandas as pd
|
|||
|
|
|||
|
|
|||
|
class RAGFlowExcelParser:
|
|||
|
def html(self, fnm, chunk_rows=256):
|
|||
|
|
|||
|
# if isinstance(fnm, str):
|
|||
|
# wb = load_workbook(fnm)
|
|||
|
# else:
|
|||
|
# wb = load_workbook(BytesIO(fnm))++
|
|||
|
|
|||
|
s_fnm = fnm
|
|||
|
if not isinstance(fnm, str):
|
|||
|
s_fnm = BytesIO(fnm)
|
|||
|
else:
|
|||
|
pass
|
|||
|
|
|||
|
try:
|
|||
|
wb = load_workbook(s_fnm)
|
|||
|
except Exception as e:
|
|||
|
print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
|
|||
|
df = pd.read_excel(s_fnm)
|
|||
|
wb = Workbook()
|
|||
|
# if len(wb.worksheets) > 0:
|
|||
|
# del wb.worksheets[0]
|
|||
|
# else: pass
|
|||
|
ws = wb.active
|
|||
|
ws.title = "Data"
|
|||
|
for col_num, column_name in enumerate(df.columns, 1):
|
|||
|
ws.cell(row=1, column=col_num, value=column_name)
|
|||
|
else:
|
|||
|
pass
|
|||
|
for row_num, row in enumerate(df.values, 2):
|
|||
|
for col_num, value in enumerate(row, 1):
|
|||
|
ws.cell(row=row_num, column=col_num, value=value)
|
|||
|
else:
|
|||
|
pass
|
|||
|
else:
|
|||
|
pass
|
|||
|
|
|||
|
tb_chunks = []
|
|||
|
for sheetname in wb.sheetnames:
|
|||
|
ws = wb[sheetname]
|
|||
|
rows = list(ws.rows)
|
|||
|
if not rows:
|
|||
|
continue
|
|||
|
|
|||
|
tb_rows_0 = "<tr>"
|
|||
|
for t in list(rows[0]):
|
|||
|
tb_rows_0 += f"<th>{t.value}</th>"
|
|||
|
tb_rows_0 += "</tr>"
|
|||
|
|
|||
|
for chunk_i in range((len(rows) - 1) // chunk_rows + 1):
|
|||
|
tb = ""
|
|||
|
tb += f"<table><caption>{sheetname}</caption>"
|
|||
|
tb += tb_rows_0
|
|||
|
for r in list(
|
|||
|
rows[1 + chunk_i * chunk_rows: 1 + (chunk_i + 1) * chunk_rows]
|
|||
|
):
|
|||
|
tb += "<tr>"
|
|||
|
for i, c in enumerate(r):
|
|||
|
if c.value is None:
|
|||
|
tb += "<td></td>"
|
|||
|
else:
|
|||
|
tb += f"<td>{c.value}</td>"
|
|||
|
tb += "</tr>"
|
|||
|
tb += "</table>\n"
|
|||
|
tb_chunks.append(tb)
|
|||
|
|
|||
|
return tb_chunks
|
|||
|
|
|||
|
def __call__(self, fnm):
|
|||
|
# if isinstance(fnm, str):
|
|||
|
# wb = load_workbook(fnm)
|
|||
|
# else:
|
|||
|
# wb = load_workbook(BytesIO(fnm))
|
|||
|
|
|||
|
s_fnm = fnm
|
|||
|
if not isinstance(fnm, str):
|
|||
|
s_fnm = BytesIO(fnm)
|
|||
|
else:
|
|||
|
pass
|
|||
|
|
|||
|
try:
|
|||
|
wb = load_workbook(s_fnm)
|
|||
|
except Exception as e:
|
|||
|
print(f'****wxy: file parser error: {e}, s_fnm={s_fnm}, trying convert files')
|
|||
|
df = pd.read_excel(s_fnm)
|
|||
|
wb = Workbook()
|
|||
|
if len(wb.worksheets) > 0:
|
|||
|
del wb.worksheets[0]
|
|||
|
else:
|
|||
|
pass
|
|||
|
ws = wb.active
|
|||
|
ws.title = "Data"
|
|||
|
for col_num, column_name in enumerate(df.columns, 1):
|
|||
|
ws.cell(row=1, column=col_num, value=column_name)
|
|||
|
else:
|
|||
|
pass
|
|||
|
for row_num, row in enumerate(df.values, 2):
|
|||
|
for col_num, value in enumerate(row, 1):
|
|||
|
ws.cell(row=row_num, column=col_num, value=value)
|
|||
|
else:
|
|||
|
pass
|
|||
|
else:
|
|||
|
pass
|
|||
|
|
|||
|
res = []
|
|||
|
for sheetname in wb.sheetnames:
|
|||
|
ws = wb[sheetname]
|
|||
|
rows = list(ws.rows)
|
|||
|
if not rows:
|
|||
|
continue
|
|||
|
ti = list(rows[0])
|
|||
|
for r in list(rows[1:]):
|
|||
|
fields = []
|
|||
|
for i, c in enumerate(r):
|
|||
|
if not c.value:
|
|||
|
continue
|
|||
|
t = str(ti[i].value) if i < len(ti) else ""
|
|||
|
t += (":" if t else "") + str(c.value)
|
|||
|
fields.append(t)
|
|||
|
line = "; ".join(fields)
|
|||
|
if sheetname.lower().find("sheet") < 0:
|
|||
|
line += " ——" + sheetname
|
|||
|
res.append(line)
|
|||
|
return res
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def row_number(fnm, binary):
|
|||
|
if fnm.split(".")[-1].lower().find("xls") >= 0:
|
|||
|
wb = load_workbook(BytesIO(binary))
|
|||
|
total = 0
|
|||
|
for sheetname in wb.sheetnames:
|
|||
|
ws = wb[sheetname]
|
|||
|
total += len(list(ws.rows))
|
|||
|
return total
|
|||
|
|
|||
|
if fnm.split(".")[-1].lower() in ["csv", "txt"]:
|
|||
|
encoding = find_codec(binary)
|
|||
|
txt = binary.decode(encoding, errors="ignore")
|
|||
|
return len(txt.split("\n"))
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
psr = RAGFlowExcelParser()
|
|||
|
psr(sys.argv[1])
|
|||
|
|