RAGflow/api/db/services/task_service.py

368 lines
14 KiB
Python
Raw Normal View History

2025-03-24 11:19:28 +08:00
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import random
import xxhash
from datetime import datetime
from api.db.db_utils import bulk_insert_into_db
from deepdoc.parser import PdfParser
from peewee import JOIN
from api.db.db_models import DB, File2Document, File
from api.db import StatusEnum, FileType, TaskStatus
from api.db.db_models import Task, Document, Knowledgebase, Tenant
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.utils import current_timestamp, get_uuid
from deepdoc.parser.excel_parser import RAGFlowExcelParser
from rag.settings import SVR_QUEUE_NAME
from rag.utils.storage_factory import STORAGE_IMPL
from rag.utils.redis_conn import REDIS_CONN
from api import settings
from rag.nlp import search
def trim_header_by_lines(text: str, max_length) -> str:
len_text = len(text)
if len_text <= max_length:
return text
for i in range(len_text):
if text[i] == '\n' and len_text - i <= max_length:
return text[i + 1:]
return text
class TaskService(CommonService):
model = Task
@classmethod
@DB.connection_context()
def get_task(cls, task_id):
fields = [
cls.model.id,
cls.model.doc_id,
cls.model.from_page,
cls.model.to_page,
cls.model.retry_count,
Document.kb_id,
Document.parser_id,
Document.parser_config,
Document.name,
Document.type,
Document.location,
Document.size,
Knowledgebase.tenant_id,
Knowledgebase.language,
Knowledgebase.embd_id,
Knowledgebase.pagerank,
Knowledgebase.parser_config.alias("kb_parser_config"),
Tenant.img2txt_id,
Tenant.asr_id,
Tenant.llm_id,
cls.model.update_time,
]
docs = (
cls.model.select(*fields)
.join(Document, on=(cls.model.doc_id == Document.id))
.join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id))
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
.where(cls.model.id == task_id)
)
docs = list(docs.dicts())
if not docs:
return None
msg = f"\n{datetime.now().strftime('%H:%M:%S')} Task has been received."
prog = random.random() / 10.0
if docs[0]["retry_count"] >= 3:
msg = "\nERROR: Task is abandoned after 3 times attempts."
prog = -1
cls.model.update(
progress_msg=cls.model.progress_msg + msg,
progress=prog,
retry_count=docs[0]["retry_count"] + 1,
).where(cls.model.id == docs[0]["id"]).execute()
if docs[0]["retry_count"] >= 3:
return None
return docs[0]
@classmethod
@DB.connection_context()
def get_tasks(cls, doc_id: str):
fields = [
cls.model.id,
cls.model.from_page,
cls.model.progress,
cls.model.digest,
cls.model.chunk_ids,
]
tasks = (
cls.model.select(*fields).order_by(cls.model.from_page.asc(), cls.model.create_time.desc())
.where(cls.model.doc_id == doc_id)
)
tasks = list(tasks.dicts())
if not tasks:
return None
return tasks
@classmethod
@DB.connection_context()
def update_chunk_ids(cls, id: str, chunk_ids: str):
cls.model.update(chunk_ids=chunk_ids).where(cls.model.id == id).execute()
@classmethod
@DB.connection_context()
def get_ongoing_doc_name(cls):
with DB.lock("get_task", -1):
docs = (
cls.model.select(
*[Document.id, Document.kb_id, Document.location, File.parent_id]
)
.join(Document, on=(cls.model.doc_id == Document.id))
.join(
File2Document,
on=(File2Document.document_id == Document.id),
join_type=JOIN.LEFT_OUTER,
)
.join(
File,
on=(File2Document.file_id == File.id),
join_type=JOIN.LEFT_OUTER,
)
.where(
Document.status == StatusEnum.VALID.value,
Document.run == TaskStatus.RUNNING.value,
~(Document.type == FileType.VIRTUAL.value),
cls.model.progress < 1,
cls.model.create_time >= current_timestamp() - 1000 * 600,
)
)
docs = list(docs.dicts())
if not docs:
return []
return list(
set(
[
(
d["parent_id"] if d["parent_id"] else d["kb_id"],
d["location"],
)
for d in docs
]
)
)
@classmethod
@DB.connection_context()
def do_cancel(cls, id):
task = cls.model.get_by_id(id)
_, doc = DocumentService.get_by_id(task.doc_id)
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
@classmethod
@DB.connection_context()
def update_progress(cls, id, info):
if os.environ.get("MACOS"):
if info["progress_msg"]:
task = cls.model.get_by_id(id)
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
if "progress" in info:
cls.model.update(progress=info["progress"]).where(
cls.model.id == id
).execute()
return
with DB.lock("update_progress", -1):
if info["progress_msg"]:
task = cls.model.get_by_id(id)
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
if "progress" in info:
cls.model.update(progress=info["progress"]).where(
cls.model.id == id
).execute()
def queue_tasks(doc: dict, bucket: str, name: str):
"""
将文档解析任务分割并加入队列处理
该函数根据文档类型(PDF表格等)将文档分割成多个子任务计算任务摘要
检查是否可以重用之前的任务结果并将未完成的任务加入Redis队列进行处理
参数:
doc (dict): 文档信息字典包含idtypeparser_idparser_config等信息
bucket (str): 存储桶名称
name (str): 文件名称
流程:
1. 根据文档类型(PDF/表格)将文档分割成多个子任务
2. 为每个任务生成唯一摘要(digest)
3. 尝试重用之前任务的处理结果
4. 清理旧任务并更新文档状态
5. 将新任务批量插入数据库
6. 将未完成的任务加入Redis队列
"""
2025-03-24 11:19:28 +08:00
def new_task():
"""
创建一个新的任务字典包含基本任务信息
返回:
dict: 包含任务ID文档ID进度和页面范围的任务字典
"""
2025-03-24 11:19:28 +08:00
return {"id": get_uuid(), "doc_id": doc["id"], "progress": 0.0, "from_page": 0, "to_page": 100000000}
# 存储所有解析任务的数组
2025-03-24 11:19:28 +08:00
parse_task_array = []
# PDF文档处理逻辑
2025-03-24 11:19:28 +08:00
if doc["type"] == FileType.PDF.value:
# 从存储中获取文件内容
2025-03-24 11:19:28 +08:00
file_bin = STORAGE_IMPL.get(bucket, name)
# 获取布局识别方式,默认为"DeepDOC"
2025-03-24 11:19:28 +08:00
do_layout = doc["parser_config"].get("layout_recognize", "DeepDOC")
# 获取PDF总页数
2025-03-24 11:19:28 +08:00
pages = PdfParser.total_page_number(doc["name"], file_bin)
# 获取每个任务处理的页数默认为12页
2025-03-24 11:19:28 +08:00
page_size = doc["parser_config"].get("task_page_size", 12)
# 对于学术论文类型默认任务页数为22
2025-03-24 11:19:28 +08:00
if doc["parser_id"] == "paper":
page_size = doc["parser_config"].get("task_page_size", 22)
# 对于特定解析器或非DeepDOC布局识别将整个文档作为一个任务处理
2025-03-24 11:19:28 +08:00
if doc["parser_id"] in ["one", "knowledge_graph"] or do_layout != "DeepDOC":
page_size = 10 ** 9
# 获取需要处理的页面范围,默认为全部页面
2025-03-24 11:19:28 +08:00
page_ranges = doc["parser_config"].get("pages") or [(1, 10 ** 5)]
# 根据页面范围和任务页数分割任务
2025-03-24 11:19:28 +08:00
for s, e in page_ranges:
# 调整页码从0开始
2025-03-24 11:19:28 +08:00
s -= 1
s = max(0, s)
# 确保结束页不超过文档总页数
2025-03-24 11:19:28 +08:00
e = min(e - 1, pages)
# 按照任务页数分割任务
2025-03-24 11:19:28 +08:00
for p in range(s, e, page_size):
task = new_task()
task["from_page"] = p
task["to_page"] = min(p + page_size, e)
parse_task_array.append(task)
# 表格文档处理逻辑
2025-03-24 11:19:28 +08:00
elif doc["parser_id"] == "table":
# 从存储中获取文件内容
2025-03-24 11:19:28 +08:00
file_bin = STORAGE_IMPL.get(bucket, name)
# 获取表格总行数
2025-03-24 11:19:28 +08:00
rn = RAGFlowExcelParser.row_number(doc["name"], file_bin)
# 每3000行作为一个任务
2025-03-24 11:19:28 +08:00
for i in range(0, rn, 3000):
task = new_task()
task["from_page"] = i
task["to_page"] = min(i + 3000, rn)
parse_task_array.append(task)
# 其他类型文档,整个文档作为一个任务处理
2025-03-24 11:19:28 +08:00
else:
parse_task_array.append(new_task())
# 获取文档的分块配置
2025-03-24 11:19:28 +08:00
chunking_config = DocumentService.get_chunking_config(doc["id"])
# 为每个任务生成唯一摘要(digest)
2025-03-24 11:19:28 +08:00
for task in parse_task_array:
# 创建哈希对象
2025-03-24 11:19:28 +08:00
hasher = xxhash.xxh64()
# 对分块配置中的每个字段进行哈希
2025-03-24 11:19:28 +08:00
for field in sorted(chunking_config.keys()):
if field == "parser_config":
# 移除不需要参与哈希计算的特定配置项
2025-03-24 11:19:28 +08:00
for k in ["raptor", "graphrag"]:
if k in chunking_config[field]:
del chunking_config[field][k]
# 将配置字段添加到哈希计算中
2025-03-24 11:19:28 +08:00
hasher.update(str(chunking_config[field]).encode("utf-8"))
# 将任务特定字段添加到哈希计算中
2025-03-24 11:19:28 +08:00
for field in ["doc_id", "from_page", "to_page"]:
hasher.update(str(task.get(field, "")).encode("utf-8"))
# 生成任务摘要并设置初始进度
2025-03-24 11:19:28 +08:00
task_digest = hasher.hexdigest()
task["digest"] = task_digest
task["progress"] = 0.0
# 获取文档之前的任务记录
2025-03-24 11:19:28 +08:00
prev_tasks = TaskService.get_tasks(doc["id"])
# 记录重用的块数量
2025-03-24 11:19:28 +08:00
ck_num = 0
if prev_tasks:
# 尝试重用之前任务的处理结果
2025-03-24 11:19:28 +08:00
for task in parse_task_array:
ck_num += reuse_prev_task_chunks(task, prev_tasks, chunking_config)
# 删除文档之前的任务记录
2025-03-24 11:19:28 +08:00
TaskService.filter_delete([Task.doc_id == doc["id"]])
# 收集需要删除的块ID
2025-03-24 11:19:28 +08:00
chunk_ids = []
for task in prev_tasks:
if task["chunk_ids"]:
chunk_ids.extend(task["chunk_ids"].split())
# 从文档存储中删除这些块
2025-03-24 11:19:28 +08:00
if chunk_ids:
settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(chunking_config["tenant_id"]),
chunking_config["kb_id"])
# 更新文档的块数量
2025-03-24 11:19:28 +08:00
DocumentService.update_by_id(doc["id"], {"chunk_num": ck_num})
# 将新任务批量插入数据库
2025-03-24 11:19:28 +08:00
bulk_insert_into_db(Task, parse_task_array, True)
# 开始解析文档
2025-03-24 11:19:28 +08:00
DocumentService.begin2parse(doc["id"])
# 筛选出未完成的任务
2025-03-24 11:19:28 +08:00
unfinished_task_array = [task for task in parse_task_array if task["progress"] < 1.0]
# 将未完成的任务加入Redis队列
2025-03-24 11:19:28 +08:00
for unfinished_task in unfinished_task_array:
assert REDIS_CONN.queue_product(
SVR_QUEUE_NAME, message=unfinished_task
), "Can't access Redis. Please check the Redis' status."
def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
idx = 0
while idx < len(prev_tasks):
prev_task = prev_tasks[idx]
if prev_task.get("from_page", 0) == task.get("from_page", 0) \
and prev_task.get("digest", 0) == task.get("digest", ""):
break
idx += 1
if idx >= len(prev_tasks):
return 0
prev_task = prev_tasks[idx]
if prev_task["progress"] < 1.0 or not prev_task["chunk_ids"]:
return 0
task["chunk_ids"] = prev_task["chunk_ids"]
task["progress"] = 1.0
if "from_page" in task and "to_page" in task and int(task['to_page']) - int(task['from_page']) >= 10 ** 6:
task["progress_msg"] = f"Page({task['from_page']}~{task['to_page']}): "
else:
task["progress_msg"] = ""
task["progress_msg"] = " ".join(
[datetime.now().strftime("%H:%M:%S"), task["progress_msg"], "Reused previous task's chunks."])
prev_task["chunk_ids"] = ""
return len(task["chunk_ids"].split())