RAGflow/docker/model_test.py

50 lines
1.4 KiB
Python
Raw Normal View History

import requests
from openai import OpenAI
# 测试 embedding 模型 (vllm-bge)
def test_embedding(model, text):
"""测试嵌入模型"""
client = OpenAI(base_url="http://localhost:8000/v1", api_key="1")
response = client.embeddings.create(
model=model, # 使用支持嵌入的模型
input=text # 需要嵌入的文本
)
# 打印嵌入响应内容
# print(f"Embedding response: {response}")
result = response.data[0].embedding
if response and response.data:
print(len(result))
else:
print("Failed to get embedding.")
# 测试文本生成模型 (vllm-deepseek)
def test_chat(model, prompt):
"""测试文本生成模型"""
client = OpenAI(base_url="http://localhost:8001/v1", api_key="1")
response = client.completions.create(
model=model,
prompt=prompt
)
# 打印生成的文本
print(f"Chat response: {response.choices[0].text}")
def main():
# 测试文本生成模型 deepseek-r1
prompt = "你好,今天的天气怎么样?"
print("Testing vllm-deepseek model for chat...")
test_chat("deepseek-r1", prompt)
# 测试嵌入模型 bge-m3
embedding_text = "我喜欢编程尤其是做AI模型。"
print("\nTesting vllm-bge model for embedding...")
test_embedding("bge-m3", embedding_text)
if __name__ == "__main__":
main()