RAGflow/graphrag/utils.py

617 lines
21 KiB
Python
Raw Normal View History

2025-03-24 11:19:28 +08:00
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
"""
Reference:
- [graphrag](https://github.com/microsoft/graphrag)
- [LightRag](https://github.com/HKUDS/LightRAG)
"""
import html
import json
import logging
import re
import time
from collections import defaultdict
from copy import deepcopy
from hashlib import md5
from typing import Any, Callable
2025-03-31 10:53:42 +08:00
import os
import trio
2025-03-24 11:19:28 +08:00
import networkx as nx
import numpy as np
import xxhash
from networkx.readwrite import json_graph
from api import settings
from rag.nlp import search, rag_tokenizer
from rag.utils.doc_store_conn import OrderByExpr
from rag.utils.redis_conn import REDIS_CONN
ErrorHandlerFn = Callable[[BaseException | None, str | None, dict | None], None]
2025-03-31 10:53:42 +08:00
chat_limiter = trio.CapacityLimiter(int(os.environ.get('MAX_CONCURRENT_CHATS', 10)))
2025-03-24 11:19:28 +08:00
def perform_variable_replacements(
input: str, history: list[dict] | None = None, variables: dict | None = None
) -> str:
"""Perform variable replacements on the input string and in a chat log."""
if history is None:
history = []
if variables is None:
variables = {}
result = input
def replace_all(input: str) -> str:
result = input
for k, v in variables.items():
result = result.replace(f"{{{k}}}", v)
return result
result = replace_all(result)
for i, entry in enumerate(history):
if entry.get("role") == "system":
entry["content"] = replace_all(entry.get("content") or "")
return result
def clean_str(input: Any) -> str:
"""Clean an input string by removing HTML escapes, control characters, and other unwanted characters."""
# If we get non-string input, just give it back
if not isinstance(input, str):
return input
result = html.unescape(input.strip())
# https://stackoverflow.com/questions/4324790/removing-control-characters-from-a-string-in-python
return re.sub(r"[\"\x00-\x1f\x7f-\x9f]", "", result)
def dict_has_keys_with_types(
data: dict, expected_fields: list[tuple[str, type]]
) -> bool:
"""Return True if the given dictionary has the given keys with the given types."""
for field, field_type in expected_fields:
if field not in data:
return False
value = data[field]
if not isinstance(value, field_type):
return False
return True
def get_llm_cache(llmnm, txt, history, genconf):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
hasher.update(str(history).encode("utf-8"))
hasher.update(str(genconf).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return bin
def set_llm_cache(llmnm, txt, v, history, genconf):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
hasher.update(str(history).encode("utf-8"))
hasher.update(str(genconf).encode("utf-8"))
k = hasher.hexdigest()
REDIS_CONN.set(k, v.encode("utf-8"), 24*3600)
def get_embed_cache(llmnm, txt):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return np.array(json.loads(bin))
def set_embed_cache(llmnm, txt, arr):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
k = hasher.hexdigest()
arr = json.dumps(arr.tolist() if isinstance(arr, np.ndarray) else arr)
REDIS_CONN.set(k, arr.encode("utf-8"), 24*3600)
def get_tags_from_cache(kb_ids):
hasher = xxhash.xxh64()
hasher.update(str(kb_ids).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return bin
def set_tags_to_cache(kb_ids, tags):
hasher = xxhash.xxh64()
hasher.update(str(kb_ids).encode("utf-8"))
k = hasher.hexdigest()
REDIS_CONN.set(k, json.dumps(tags).encode("utf-8"), 600)
def graph_merge(g1, g2):
g = g2.copy()
for n, attr in g1.nodes(data=True):
if n not in g2.nodes():
g.add_node(n, **attr)
continue
for source, target, attr in g1.edges(data=True):
if g.has_edge(source, target):
g[source][target].update({"weight": attr.get("weight", 0)+1})
continue
g.add_edge(source, target)#, **attr)
for node_degree in g.degree:
g.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
return g
def compute_args_hash(*args):
return md5(str(args).encode()).hexdigest()
def handle_single_entity_extraction(
record_attributes: list[str],
chunk_key: str,
):
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
return None
# add this record as a node in the G
entity_name = clean_str(record_attributes[1].upper())
if not entity_name.strip():
return None
entity_type = clean_str(record_attributes[2].upper())
entity_description = clean_str(record_attributes[3])
entity_source_id = chunk_key
return dict(
entity_name=entity_name.upper(),
entity_type=entity_type.upper(),
description=entity_description,
source_id=entity_source_id,
)
def handle_single_relationship_extraction(record_attributes: list[str], chunk_key: str):
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
return None
# add this record as edge
source = clean_str(record_attributes[1].upper())
target = clean_str(record_attributes[2].upper())
edge_description = clean_str(record_attributes[3])
edge_keywords = clean_str(record_attributes[4])
edge_source_id = chunk_key
weight = (
float(record_attributes[-1]) if is_float_regex(record_attributes[-1]) else 1.0
)
pair = sorted([source.upper(), target.upper()])
return dict(
src_id=pair[0],
tgt_id=pair[1],
weight=weight,
description=edge_description,
keywords=edge_keywords,
source_id=edge_source_id,
metadata={"created_at": time.time()},
)
def pack_user_ass_to_openai_messages(*args: str):
roles = ["user", "assistant"]
return [
{"role": roles[i % 2], "content": content} for i, content in enumerate(args)
]
def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]:
"""Split a string by multiple markers"""
if not markers:
return [content]
results = re.split("|".join(re.escape(marker) for marker in markers), content)
return [r.strip() for r in results if r.strip()]
def is_float_regex(value):
return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value))
def chunk_id(chunk):
return xxhash.xxh64((chunk["content_with_weight"] + chunk["kb_id"]).encode("utf-8")).hexdigest()
2025-03-31 10:53:42 +08:00
def get_entity_cache(tenant_id, kb_id, ent_name) -> str | list[str]:
hasher = xxhash.xxh64()
hasher.update(str(tenant_id).encode("utf-8"))
hasher.update(str(kb_id).encode("utf-8"))
hasher.update(str(ent_name).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return json.loads(bin)
def set_entity_cache(tenant_id, kb_id, ent_name, content_with_weight):
hasher = xxhash.xxh64()
hasher.update(str(tenant_id).encode("utf-8"))
hasher.update(str(kb_id).encode("utf-8"))
hasher.update(str(ent_name).encode("utf-8"))
k = hasher.hexdigest()
REDIS_CONN.set(k, content_with_weight.encode("utf-8"), 3600)
2025-03-24 11:19:28 +08:00
def get_entity(tenant_id, kb_id, ent_name):
2025-03-31 10:53:42 +08:00
cache = get_entity_cache(tenant_id, kb_id, ent_name)
if cache:
return cache
2025-03-24 11:19:28 +08:00
conds = {
"fields": ["content_with_weight"],
"entity_kwd": ent_name,
"size": 10000,
"knowledge_graph_kwd": ["entity"]
}
res = []
es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id])
for id in es_res.ids:
try:
if isinstance(ent_name, str):
2025-03-31 10:53:42 +08:00
set_entity_cache(tenant_id, kb_id, ent_name, es_res.field[id]["content_with_weight"])
2025-03-24 11:19:28 +08:00
return json.loads(es_res.field[id]["content_with_weight"])
res.append(json.loads(es_res.field[id]["content_with_weight"]))
except Exception:
continue
return res
def set_entity(tenant_id, kb_id, embd_mdl, ent_name, meta):
chunk = {
"important_kwd": [ent_name],
"title_tks": rag_tokenizer.tokenize(ent_name),
"entity_kwd": ent_name,
"knowledge_graph_kwd": "entity",
"entity_type_kwd": meta["entity_type"],
"content_with_weight": json.dumps(meta, ensure_ascii=False),
"content_ltks": rag_tokenizer.tokenize(meta["description"]),
"source_id": list(set(meta["source_id"])),
"kb_id": kb_id,
"available_int": 0
}
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
2025-03-31 10:53:42 +08:00
set_entity_cache(tenant_id, kb_id, ent_name, chunk["content_with_weight"])
2025-03-24 11:19:28 +08:00
res = settings.retrievaler.search({"entity_kwd": ent_name, "size": 1, "fields": []},
search.index_name(tenant_id), [kb_id])
if res.ids:
settings.docStoreConn.update({"entity_kwd": ent_name}, chunk, search.index_name(tenant_id), kb_id)
else:
ebd = get_embed_cache(embd_mdl.llm_name, ent_name)
if ebd is None:
try:
ebd, _ = embd_mdl.encode([ent_name])
ebd = ebd[0]
set_embed_cache(embd_mdl.llm_name, ent_name, ebd)
except Exception as e:
logging.exception(f"Fail to embed entity: {e}")
if ebd is not None:
chunk["q_%d_vec" % len(ebd)] = ebd
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id)
def get_relation(tenant_id, kb_id, from_ent_name, to_ent_name, size=1):
ents = from_ent_name
if isinstance(ents, str):
ents = [from_ent_name]
if isinstance(to_ent_name, str):
to_ent_name = [to_ent_name]
ents.extend(to_ent_name)
ents = list(set(ents))
conds = {
"fields": ["content_with_weight"],
"size": size,
"from_entity_kwd": ents,
"to_entity_kwd": ents,
"knowledge_graph_kwd": ["relation"]
}
res = []
es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id)
for id in es_res.ids:
try:
if size == 1:
return json.loads(es_res.field[id]["content_with_weight"])
res.append(json.loads(es_res.field[id]["content_with_weight"]))
except Exception:
continue
return res
def set_relation(tenant_id, kb_id, embd_mdl, from_ent_name, to_ent_name, meta):
chunk = {
"from_entity_kwd": from_ent_name,
"to_entity_kwd": to_ent_name,
"knowledge_graph_kwd": "relation",
"content_with_weight": json.dumps(meta, ensure_ascii=False),
"content_ltks": rag_tokenizer.tokenize(meta["description"]),
"important_kwd": meta["keywords"],
"source_id": list(set(meta["source_id"])),
"weight_int": int(meta["weight"]),
"kb_id": kb_id,
"available_int": 0
}
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
res = settings.retrievaler.search({"from_entity_kwd": to_ent_name, "to_entity_kwd": to_ent_name, "size": 1, "fields": []},
search.index_name(tenant_id), [kb_id])
if res.ids:
settings.docStoreConn.update({"from_entity_kwd": from_ent_name, "to_entity_kwd": to_ent_name},
chunk,
search.index_name(tenant_id), kb_id)
else:
txt = f"{from_ent_name}->{to_ent_name}"
ebd = get_embed_cache(embd_mdl.llm_name, txt)
if ebd is None:
try:
ebd, _ = embd_mdl.encode([txt+f": {meta['description']}"])
ebd = ebd[0]
set_embed_cache(embd_mdl.llm_name, txt, ebd)
except Exception as e:
logging.exception(f"Fail to embed entity relation: {e}")
if ebd is not None:
chunk["q_%d_vec" % len(ebd)] = ebd
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id)
2025-03-31 10:53:42 +08:00
async def does_graph_contains(tenant_id, kb_id, doc_id):
# Get doc_ids of graph
fields = ["source_id"]
condition = {
"knowledge_graph_kwd": ["graph"],
"removed_kwd": "N",
}
res = await trio.to_thread.run_sync(lambda: settings.docStoreConn.search(fields, [], condition, [], OrderByExpr(), 0, 1, search.index_name(tenant_id), [kb_id]))
fields2 = settings.docStoreConn.getFields(res, fields)
graph_doc_ids = set()
for chunk_id in fields2.keys():
graph_doc_ids = set(fields2[chunk_id]["source_id"])
return doc_id in graph_doc_ids
async def get_graph_doc_ids(tenant_id, kb_id) -> list[str]:
conds = {
"fields": ["source_id"],
"removed_kwd": "N",
"size": 1,
"knowledge_graph_kwd": ["graph"]
}
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
doc_ids = []
if res.total == 0:
return doc_ids
for id in res.ids:
doc_ids = res.field[id]["source_id"]
return doc_ids
2025-03-24 11:19:28 +08:00
2025-03-31 10:53:42 +08:00
async def get_graph(tenant_id, kb_id):
2025-03-24 11:19:28 +08:00
conds = {
"fields": ["content_with_weight", "source_id"],
"removed_kwd": "N",
"size": 1,
"knowledge_graph_kwd": ["graph"]
}
2025-03-31 10:53:42 +08:00
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id]))
if res.total == 0:
return None, []
2025-03-24 11:19:28 +08:00
for id in res.ids:
try:
return json_graph.node_link_graph(json.loads(res.field[id]["content_with_weight"]), edges="edges"), \
res.field[id]["source_id"]
except Exception:
continue
2025-03-31 10:53:42 +08:00
result = await rebuild_graph(tenant_id, kb_id)
return result
2025-03-24 11:19:28 +08:00
2025-03-31 10:53:42 +08:00
async def set_graph(tenant_id, kb_id, graph, docids):
2025-03-24 11:19:28 +08:00
chunk = {
"content_with_weight": json.dumps(nx.node_link_data(graph, edges="edges"), ensure_ascii=False,
indent=2),
"knowledge_graph_kwd": "graph",
"kb_id": kb_id,
"source_id": list(docids),
"available_int": 0,
"removed_kwd": "N"
2025-03-31 10:53:42 +08:00
}
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "graph", "size": 1, "fields": []}, search.index_name(tenant_id), [kb_id]))
2025-03-24 11:19:28 +08:00
if res.ids:
2025-03-31 10:53:42 +08:00
await trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"knowledge_graph_kwd": "graph"}, chunk,
search.index_name(tenant_id), kb_id))
2025-03-24 11:19:28 +08:00
else:
2025-03-31 10:53:42 +08:00
await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id))
2025-03-24 11:19:28 +08:00
def is_continuous_subsequence(subseq, seq):
def find_all_indexes(tup, value):
indexes = []
start = 0
while True:
try:
index = tup.index(value, start)
indexes.append(index)
start = index + 1
except ValueError:
break
return indexes
index_list = find_all_indexes(seq,subseq[0])
for idx in index_list:
if idx!=len(seq)-1:
if seq[idx+1]==subseq[-1]:
return True
return False
def merge_tuples(list1, list2):
result = []
for tup in list1:
last_element = tup[-1]
if last_element in tup[:-1]:
result.append(tup)
else:
matching_tuples = [t for t in list2 if t[0] == last_element]
already_match_flag = 0
for match in matching_tuples:
matchh = (match[1], match[0])
if is_continuous_subsequence(match, tup) or is_continuous_subsequence(matchh, tup):
continue
already_match_flag = 1
merged_tuple = tup + match[1:]
result.append(merged_tuple)
if not already_match_flag:
result.append(tup)
return result
2025-03-31 10:53:42 +08:00
async def update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, n_hop):
2025-03-24 11:19:28 +08:00
def n_neighbor(id):
nonlocal graph, n_hop
count = 0
source_edge = list(graph.edges(id))
if not source_edge:
return []
count = count + 1
while count < n_hop:
count = count + 1
sc_edge = deepcopy(source_edge)
source_edge = []
for pair in sc_edge:
append_edge = list(graph.edges(pair[-1]))
for tuples in merge_tuples([pair], append_edge):
source_edge.append(tuples)
nbrs = []
for path in source_edge:
n = {"path": path, "weights": []}
wts = nx.get_edge_attributes(graph, 'weight')
for i in range(len(path)-1):
f, t = path[i], path[i+1]
n["weights"].append(wts.get((f, t), 0))
nbrs.append(n)
return nbrs
pr = nx.pagerank(graph)
2025-03-31 10:53:42 +08:00
try:
async with trio.open_nursery() as nursery:
for n, p in pr.items():
graph.nodes[n]["pagerank"] = p
nursery.start_soon(lambda: trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"entity_kwd": n, "kb_id": kb_id},
{"rank_flt": p,
"n_hop_with_weight": json.dumps((n), ensure_ascii=False)},
search.index_name(tenant_id), kb_id)))
except Exception as e:
logging.exception(e)
2025-03-24 11:19:28 +08:00
ty2ents = defaultdict(list)
for p, r in sorted(pr.items(), key=lambda x: x[1], reverse=True):
ty = graph.nodes[p].get("entity_type")
if not ty or len(ty2ents[ty]) > 12:
continue
ty2ents[ty].append(p)
chunk = {
"content_with_weight": json.dumps(ty2ents, ensure_ascii=False),
"kb_id": kb_id,
"knowledge_graph_kwd": "ty2ents",
"available_int": 0
}
2025-03-31 10:53:42 +08:00
res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "size": 1, "fields": []},
search.index_name(tenant_id), [kb_id]))
2025-03-24 11:19:28 +08:00
if res.ids:
2025-03-31 10:53:42 +08:00
await trio.to_thread.run_sync(lambda: settings.docStoreConn.update({"knowledge_graph_kwd": "ty2ents"},
2025-03-24 11:19:28 +08:00
chunk,
2025-03-31 10:53:42 +08:00
search.index_name(tenant_id), kb_id))
2025-03-24 11:19:28 +08:00
else:
2025-03-31 10:53:42 +08:00
await trio.to_thread.run_sync(lambda: settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id), kb_id))
2025-03-24 11:19:28 +08:00
2025-03-31 10:53:42 +08:00
async def get_entity_type2sampels(idxnms, kb_ids: list):
es_res = await trio.to_thread.run_sync(lambda: settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids,
2025-03-24 11:19:28 +08:00
"size": 10000,
"fields": ["content_with_weight"]},
2025-03-31 10:53:42 +08:00
idxnms, kb_ids))
2025-03-24 11:19:28 +08:00
res = defaultdict(list)
for id in es_res.ids:
smp = es_res.field[id].get("content_with_weight")
if not smp:
continue
try:
smp = json.loads(smp)
except Exception as e:
logging.exception(e)
for ty, ents in smp.items():
res[ty].extend(ents)
return res
def flat_uniq_list(arr, key):
res = []
for a in arr:
a = a[key]
if isinstance(a, list):
res.extend(a)
else:
res.append(a)
return list(set(res))
2025-03-31 10:53:42 +08:00
async def rebuild_graph(tenant_id, kb_id):
2025-03-24 11:19:28 +08:00
graph = nx.Graph()
src_ids = []
flds = ["entity_kwd", "entity_type_kwd", "from_entity_kwd", "to_entity_kwd", "weight_int", "knowledge_graph_kwd", "source_id"]
bs = 256
for i in range(0, 39*bs, bs):
2025-03-31 10:53:42 +08:00
es_res = await trio.to_thread.run_sync(lambda: settings.docStoreConn.search(flds, [],
2025-03-24 11:19:28 +08:00
{"kb_id": kb_id, "knowledge_graph_kwd": ["entity", "relation"]},
[],
OrderByExpr(),
i, bs, search.index_name(tenant_id), [kb_id]
2025-03-31 10:53:42 +08:00
))
2025-03-24 11:19:28 +08:00
tot = settings.docStoreConn.getTotal(es_res)
if tot == 0:
return None, None
es_res = settings.docStoreConn.getFields(es_res, flds)
for id, d in es_res.items():
src_ids.extend(d.get("source_id", []))
if d["knowledge_graph_kwd"] == "entity":
graph.add_node(d["entity_kwd"], entity_type=d["entity_type_kwd"])
elif "from_entity_kwd" in d and "to_entity_kwd" in d:
graph.add_edge(
d["from_entity_kwd"],
d["to_entity_kwd"],
weight=int(d["weight_int"])
)
if len(es_res.keys()) < 128:
return graph, list(set(src_ids))
return graph, list(set(src_ids))