feat: 添加模型下载和测试脚本

添加 `download_model.py` 用于从 Hugging Face 下载模型,支持断点续传。添加 `model_test.py` 用于测试下载的嵌入模型和文本生成模型,确保模型功能正常。
This commit is contained in:
zstar 2025-04-24 00:26:39 +08:00
parent 5a72b69d7f
commit 0e213aaa09
2 changed files with 83 additions and 0 deletions

34
docker/download_model.py Normal file
View File

@ -0,0 +1,34 @@
import os
from huggingface_hub import snapshot_download
# 1. 设置镜像源(国内加速)
# os.environ["HF_ENDPOINT"] = "https://mirrors.tuna.tsinghua.edu.cn/hugging-face/"
# 2. 定义模型列表(名称 + 下载路径)
models_to_download = [
{
"repo_id": "BAAI/bge-m3", # Embedding 模型
"local_dir": os.path.expanduser("./models/bge-m3"),
},
{
"repo_id": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", # LLM 模型
"local_dir": os.path.expanduser("./models/DeepSeek-R1-1.5B"),
}
]
# 3. 遍历下载所有模型
for model in models_to_download:
while True: # 断点续传重试机制
try:
print(f"开始下载模型: {model['repo_id']} 到目录: {model['local_dir']}")
snapshot_download(
repo_id=model["repo_id"],
local_dir=model["local_dir"],
resume_download=True, # 启用断点续传
force_download=False, # 避免重复下载已有文件
token=None, # 如需访问私有模型,替换为你的 token
)
print(f"模型 {model['repo_id']} 下载完成!")
break
except Exception as e:
print(f"下载失败: {e}, 重试中...")

49
docker/model_test.py Normal file
View File

@ -0,0 +1,49 @@
import requests
from openai import OpenAI
# 测试 embedding 模型 (vllm-bge)
def test_embedding(model, text):
"""测试嵌入模型"""
client = OpenAI(base_url="http://localhost:8000/v1", api_key="1")
response = client.embeddings.create(
model=model, # 使用支持嵌入的模型
input=text # 需要嵌入的文本
)
# 打印嵌入响应内容
# print(f"Embedding response: {response}")
result = response.data[0].embedding
if response and response.data:
print(len(result))
else:
print("Failed to get embedding.")
# 测试文本生成模型 (vllm-deepseek)
def test_chat(model, prompt):
"""测试文本生成模型"""
client = OpenAI(base_url="http://localhost:8001/v1", api_key="1")
response = client.completions.create(
model=model,
prompt=prompt
)
# 打印生成的文本
print(f"Chat response: {response.choices[0].text}")
def main():
# 测试文本生成模型 deepseek-r1
prompt = "你好,今天的天气怎么样?"
print("Testing vllm-deepseek model for chat...")
test_chat("deepseek-r1", prompt)
# 测试嵌入模型 bge-m3
embedding_text = "我喜欢编程尤其是做AI模型。"
print("\nTesting vllm-bge model for embedding...")
test_embedding("bge-m3", embedding_text)
if __name__ == "__main__":
main()