feat(解析文件类型增加): 解析文件增加对word和ppt的支持。 (#32)

增加对word和ppt的支持,需要安装LibreOffice。同时,将文档解析逻辑从 `KnowledgebaseService` 中提取到独立的 `document_parser.py` 模块,以提高代码的可维护性和复用性。同时优化了文件上传和临时文件处理的逻辑,确保资源正确释放。
This commit is contained in:
zstar 2025-04-17 16:31:20 +08:00 committed by GitHub
parent a7a689d0a9
commit 6057163f28
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 508 additions and 565 deletions

View File

@ -1,6 +1,7 @@
import os
import mysql.connector
import re
import tempfile
from io import BytesIO
from minio import Minio
from dotenv import load_dotenv
@ -15,7 +16,8 @@ from database import DB_CONFIG, MINIO_CONFIG
# 加载环境变量
load_dotenv("../../docker/.env")
UPLOAD_FOLDER = '/data/uploads'
temp_dir = tempfile.gettempdir()
UPLOAD_FOLDER = os.path.join(temp_dir, "uploads")
ALLOWED_EXTENSIONS = {'pdf', 'doc', 'docx', 'ppt', 'pptx', 'xls', 'xlsx', 'jpg', 'jpeg', 'png', 'txt', 'md'}
def allowed_file(filename):

View File

@ -0,0 +1,400 @@
import os
import tempfile
import shutil
import json
import mysql.connector
import time
import traceback
from io import BytesIO
from datetime import datetime
from elasticsearch import Elasticsearch
from database import MINIO_CONFIG, ES_CONFIG, DB_CONFIG, get_minio_client, get_es_client
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
from magic_pdf.data.read_api import read_local_office
from utils import generate_uuid
# 自定义tokenizer和文本处理函数替代rag.nlp中的功能
def tokenize_text(text):
"""将文本分词替代rag_tokenizer功能"""
# 简单实现,实际应用中可能需要更复杂的分词逻辑
return text.split()
def merge_chunks(sections, chunk_token_num=128, delimiter="\n。;!?"):
"""合并文本块替代naive_merge功能"""
if not sections:
return []
chunks = [""]
token_counts = [0]
for section in sections:
# 计算当前部分的token数量
text = section[0] if isinstance(section, tuple) else section
position = section[1] if isinstance(section, tuple) and len(section) > 1 else ""
# 简单估算token数量
token_count = len(text.split())
# 如果当前chunk已经超过限制创建新chunk
if token_counts[-1] > chunk_token_num:
chunks.append(text)
token_counts.append(token_count)
else:
# 否则添加到当前chunk
chunks[-1] += text
token_counts[-1] += token_count
return chunks
def _get_db_connection():
"""创建数据库连接"""
return mysql.connector.connect(**DB_CONFIG)
def _update_document_progress(doc_id, progress=None, message=None, status=None, run=None, chunk_count=None, process_duration=None):
"""更新数据库中文档的进度和状态"""
conn = None
cursor = None
try:
conn = _get_db_connection()
cursor = conn.cursor()
updates = []
params = []
if progress is not None:
updates.append("progress = %s")
params.append(float(progress))
if message is not None:
updates.append("progress_msg = %s")
params.append(message)
if status is not None:
updates.append("status = %s")
params.append(status)
if run is not None:
updates.append("run = %s")
params.append(run)
if chunk_count is not None:
updates.append("chunk_num = %s")
params.append(chunk_count)
if process_duration is not None:
updates.append("process_duation = %s")
params.append(process_duration)
if not updates:
return
query = f"UPDATE document SET {', '.join(updates)} WHERE id = %s"
params.append(doc_id)
cursor.execute(query, params)
conn.commit()
except Exception as e:
print(f"[Parser-ERROR] 更新文档 {doc_id} 进度失败: {e}")
finally:
if cursor:
cursor.close()
if conn:
conn.close()
def _update_kb_chunk_count(kb_id, count_delta):
"""更新知识库的块数量"""
conn = None
cursor = None
try:
conn = _get_db_connection()
cursor = conn.cursor()
current_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
kb_update = """
UPDATE knowledgebase
SET chunk_num = chunk_num + %s,
update_date = %s
WHERE id = %s
"""
cursor.execute(kb_update, (count_delta, current_date, kb_id))
conn.commit()
except Exception as e:
print(f"[Parser-ERROR] 更新知识库 {kb_id} 块数量失败: {e}")
finally:
if cursor:
cursor.close()
if conn:
conn.close()
def _create_task_record(doc_id, chunk_ids_list):
"""创建task记录"""
conn = None
cursor = None
try:
conn = _get_db_connection()
cursor = conn.cursor()
task_id = generate_uuid()
current_datetime = datetime.now()
current_timestamp = int(current_datetime.timestamp() * 1000)
current_time_str = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
current_date_only = current_datetime.strftime("%Y-%m-%d")
digest = f"{doc_id}_{0}_{1}" # 假设 from_page=0, to_page=1
chunk_ids_str = ' '.join(chunk_ids_list)
task_insert = """
INSERT INTO task (
id, create_time, create_date, update_time, update_date,
doc_id, from_page, to_page, begin_at, process_duation,
progress, progress_msg, retry_count, digest, chunk_ids, task_type
) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
"""
task_params = [
task_id, current_timestamp, current_date_only, current_timestamp, current_date_only,
doc_id, 0, 1, None, 0.0, # begin_at, process_duration
1.0, "MinerU解析完成", 1, digest, chunk_ids_str, "" # progress, msg, retry, digest, chunks, type
]
cursor.execute(task_insert, task_params)
conn.commit()
print(f"[Parser-INFO] Task记录创建成功Task ID: {task_id}")
except Exception as e:
print(f"[Parser-ERROR] 创建Task记录失败: {e}")
finally:
if cursor:
cursor.close()
if conn:
conn.close()
def perform_parse(doc_id, doc_info, file_info):
"""
执行文档解析的核心逻辑
Args:
doc_id (str): 文档ID.
doc_info (dict): 包含文档信息的字典 (name, location, type, kb_id, parser_config, created_by).
file_info (dict): 包含文件信息的字典 (parent_id/bucket_name).
Returns:
dict: 包含解析结果的字典 (success, chunk_count).
"""
temp_pdf_path = None
temp_image_dir = None
start_time = time.time()
try:
kb_id = doc_info['kb_id']
file_location = doc_info['location']
# 从文件路径中提取原始后缀名
_, file_extension = os.path.splitext(file_location)
file_type = doc_info['type'].lower()
parser_config = json.loads(doc_info['parser_config']) if isinstance(doc_info['parser_config'], str) else doc_info['parser_config']
bucket_name = file_info['parent_id'] # 文件存储的桶是 parent_id
tenant_id = doc_info['created_by'] # 文档创建者作为 tenant_id
# 进度更新回调 (直接调用内部更新函数)
def update_progress(prog=None, msg=None):
_update_document_progress(doc_id, progress=prog, message=msg)
print(f"[Parser-PROGRESS] Doc: {doc_id}, Progress: {prog}, Message: {msg}")
# 1. 从 MinIO 获取文件内容
minio_client = get_minio_client()
if not minio_client.bucket_exists(bucket_name):
raise Exception(f"存储桶不存在: {bucket_name}")
update_progress(0.1, f"正在从存储中获取文件: {file_location}")
response = minio_client.get_object(bucket_name, file_location)
file_content = response.read()
response.close()
update_progress(0.2, "文件获取成功,准备解析")
# 2. 根据文件类型选择解析器
content_list = []
if file_type.endswith('pdf'):
update_progress(0.3, "使用MinerU解析器")
# 创建临时文件保存PDF内容
temp_dir = tempfile.gettempdir()
temp_pdf_path = os.path.join(temp_dir, f"{doc_id}.pdf")
with open(temp_pdf_path, 'wb') as f:
f.write(file_content)
# 使用Magic PDF处理
reader = FileBasedDataReader("")
pdf_bytes = reader.read(temp_pdf_path)
ds = PymuDocDataset(pdf_bytes)
update_progress(0.3, "分析PDF类型")
is_ocr = ds.classify() == SupportedPdfParseMethod.OCR
mode_msg = "OCR模式" if is_ocr else "文本模式"
update_progress(0.4, f"使用{mode_msg}处理PDF")
infer_result = ds.apply(doc_analyze, ocr=is_ocr)
# 设置临时输出目录
temp_image_dir = os.path.join(temp_dir, f"images_{doc_id}")
os.makedirs(temp_image_dir, exist_ok=True)
image_writer = FileBasedDataWriter(temp_image_dir)
update_progress(0.6, f"处理{mode_msg}结果")
pipe_result = infer_result.pipe_ocr_mode(image_writer) if is_ocr else infer_result.pipe_txt_mode(image_writer)
update_progress(0.8, "提取内容")
content_list = pipe_result.get_content_list(os.path.basename(temp_image_dir))
elif file_type.endswith('word') or file_type.endswith('ppt'):
update_progress(0.3, "使用MinerU解析器")
# 创建临时文件保存文件内容
temp_dir = tempfile.gettempdir()
temp_file_path = os.path.join(temp_dir, f"{doc_id}{file_extension}")
with open(temp_file_path, 'wb') as f:
f.write(file_content)
print(f"[Parser-INFO] 临时文件路径: {temp_file_path}")
# 使用MinerU处理
ds = read_local_office(temp_file_path)[0]
infer_result = ds.apply(doc_analyze, ocr=True)
# 设置临时输出目录
temp_image_dir = os.path.join(temp_dir, f"images_{doc_id}")
os.makedirs(temp_image_dir, exist_ok=True)
image_writer = FileBasedDataWriter(temp_image_dir)
update_progress(0.6, f"处理文件结果")
pipe_result = infer_result.pipe_txt_mode(image_writer)
update_progress(0.8, "提取内容")
content_list = pipe_result.get_content_list(os.path.basename(temp_image_dir))
else:
update_progress(0.3, f"暂不支持的文件类型: {file_type}")
raise NotImplementedError(f"文件类型 '{file_type}' 的解析器尚未实现")
# 3. 处理解析结果 (上传到MinIO, 存储到ES)
update_progress(0.95, "保存解析结果")
es_client = get_es_client()
# 注意MinIO的桶应该是知识库ID (kb_id),而不是文件的 parent_id
output_bucket = kb_id
if not minio_client.bucket_exists(output_bucket):
minio_client.make_bucket(output_bucket)
print(f"[Parser-INFO] 创建MinIO桶: {output_bucket}")
index_name = f"ragflow_{tenant_id}"
if not es_client.indices.exists(index=index_name):
# 创建索引
es_client.indices.create(
index=index_name,
body={
"settings": {"number_of_replicas": 0}, # 单节点设为0
"mappings": { "properties": { "doc_id": {"type": "keyword"}, "kb_id": {"type": "keyword"}, "content_with_weight": {"type": "text"} } } # 简化字段
}
)
print(f"[Parser-INFO] 创建Elasticsearch索引: {index_name}")
chunk_count = 0
chunk_ids_list = []
for chunk_idx, chunk_data in enumerate(content_list):
if chunk_data["type"] == "text":
content = chunk_data["text"]
if not content or not content.strip():
continue
chunk_id = generate_uuid()
try:
# 上传文本块到MinIO (桶为kb_id)
minio_client.put_object(
bucket_name=output_bucket,
object_name=chunk_id,
data=BytesIO(content.encode('utf-8')),
length=len(content.encode('utf-8')) # 使用字节长度
)
# 准备ES文档
content_tokens = tokenize_text(content) # 分词
current_time_es = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
current_timestamp_es = datetime.now().timestamp()
es_doc = {
"doc_id": doc_id,
"kb_id": kb_id,
"docnm_kwd": doc_info['name'],
"title_tks": doc_info['name'],
"title_sm_tks": doc_info['name'],
"content_with_weight": content,
"content_ltks": content_tokens,
"content_sm_ltks": content_tokens,
"page_num_int": [1], # 简化处理
"position_int": [[1, 0, 0, 0, 0]], # 简化处理
"top_int": [1], # 简化处理
"create_time": current_time_es,
"create_timestamp_flt": current_timestamp_es,
"img_id": "",
"q_1024_vec": [] # 向量字段留空
}
# 存储到Elasticsearch
es_client.index(index=index_name, document=es_doc) # 使用 document 参数
chunk_count += 1
chunk_ids_list.append(chunk_id)
print(f"成功处理文本块 {chunk_count}/{len(content_list)}")
except Exception as e:
print(f"[Parser-ERROR] 处理文本块 {chunk_idx} 失败: {e}")
elif chunk_data["type"] == "image":
img_path_relative = chunk_data.get('img_path')
if not img_path_relative or not temp_image_dir:
continue
img_path_abs = os.path.join(temp_image_dir, os.path.basename(img_path_relative))
if not os.path.exists(img_path_abs):
print(f"[Parser-WARNING] 图片文件不存在: {img_path_abs}")
continue
img_id = generate_uuid()
img_ext = os.path.splitext(img_path_abs)[1]
img_key = f"images/{img_id}{img_ext}" # MinIO中的对象名
content_type = f"image/{img_ext[1:].lower()}"
if content_type == "image/jpg": content_type = "image/jpeg"
# try:
# # 上传图片到MinIO (桶为kb_id)
# minio_client.fput_object(
# bucket_name=output_bucket,
# object_name=img_key,
# file_path=img_path_abs,
# content_type=content_type
# )
# print(f"成功上传图片: {img_key}")
# # 注意设置公共访问权限可能需要额外配置MinIO服务器和存储桶策略
# except Exception as e:
# print(f"[Parser-ERROR] 上传图片 {img_path_abs} 失败: {e}")
# 4. 更新最终状态
process_duration = time.time() - start_time
_update_document_progress(doc_id, progress=1.0, message="解析完成", status='1', run='3', chunk_count=chunk_count, process_duration=process_duration)
_update_kb_chunk_count(kb_id, chunk_count) # 更新知识库总块数
_create_task_record(doc_id, chunk_ids_list) # 创建task记录
update_progress(1.0, "解析完成")
print(f"[Parser-INFO] 解析完成文档ID: {doc_id}, 耗时: {process_duration:.2f}s, 块数: {chunk_count}")
return {"success": True, "chunk_count": chunk_count}
except Exception as e:
process_duration = time.time() - start_time
# error_message = f"解析失败: {str(e)}"
print(f"[Parser-ERROR] 文档 {doc_id} 解析失败: {e}")
error_message = f"解析失败: 无法执行文件转换。请确保已正确安装LibreOffice并将其添加到系统环境变量PATH中。"
traceback.print_exc() # 打印详细错误堆栈
# 更新文档状态为失败
_update_document_progress(doc_id, status='1', run='0', message=error_message, process_duration=process_duration) # status=1表示完成run=0表示失败
# 不抛出异常,让调用者知道任务已结束(但失败)
return {"success": False, "error": error_message}
finally:
# 清理临时文件
try:
if temp_pdf_path and os.path.exists(temp_pdf_path):
os.remove(temp_pdf_path)
if temp_image_dir and os.path.exists(temp_image_dir):
shutil.rmtree(temp_image_dir, ignore_errors=True)
except Exception as clean_e:
print(f"[Parser-WARNING] 清理临时文件失败: {clean_e}")

View File

@ -1,83 +1,19 @@
import mysql.connector
import json
from flask import current_app
import threading
from datetime import datetime
from utils import generate_uuid
from database import DB_CONFIG, get_minio_client, get_es_client
import io
import os
import json
import threading
import time
import tempfile
import shutil
from elasticsearch import Elasticsearch
from io import BytesIO
from database import DB_CONFIG
# 解析相关模块
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
# 自定义tokenizer和文本处理函数替代rag.nlp中的功能
def tokenize_text(text):
"""将文本分词替代rag_tokenizer功能"""
# 简单实现,实际应用中可能需要更复杂的分词逻辑
return text.split()
def merge_chunks(sections, chunk_token_num=128, delimiter="\n。;!?"):
"""合并文本块替代naive_merge功能"""
if not sections:
return []
chunks = [""]
token_counts = [0]
for section in sections:
# 计算当前部分的token数量
text = section[0] if isinstance(section, tuple) else section
position = section[1] if isinstance(section, tuple) and len(section) > 1 else ""
# 简单估算token数量
token_count = len(text.split())
# 如果当前chunk已经超过限制创建新chunk
if token_counts[-1] > chunk_token_num:
chunks.append(text)
token_counts.append(token_count)
else:
# 否则添加到当前chunk
chunks[-1] += text
token_counts[-1] += token_count
return chunks
def process_document_chunks(chunks, document_info):
"""处理文档块替代tokenize_chunks功能"""
results = []
for chunk in chunks:
if not chunk.strip():
continue
# 创建文档块对象
chunk_data = document_info.copy()
chunk_data["content"] = chunk
chunk_data["tokens"] = tokenize_text(chunk)
results.append(chunk_data)
return results
from .document_parser import perform_parse, _update_document_progress
class KnowledgebaseService:
@classmethod
def _get_db_connection(cls):
"""Get database connection"""
"""创建数据库连接"""
return mysql.connector.connect(**DB_CONFIG)
@classmethod
def get_knowledgebase_list(cls, page=1, size=10, name=''):
"""获取知识库列表"""
@ -304,7 +240,7 @@ class KnowledgebaseService:
return cls.get_knowledgebase_detail(kb_id)
except Exception as e:
current_app.logger.error(f"创建知识库失败: {str(e)}")
print(f"创建知识库失败: {str(e)}")
raise Exception(f"创建知识库失败: {str(e)}")
@classmethod
@ -391,7 +327,7 @@ class KnowledgebaseService:
return True
except Exception as e:
current_app.logger.error(f"删除知识库失败: {str(e)}")
print(f"删除知识库失败: {str(e)}")
raise Exception(f"删除知识库失败: {str(e)}")
@classmethod
@ -422,7 +358,7 @@ class KnowledgebaseService:
return len(kb_ids)
except Exception as e:
current_app.logger.error(f"批量删除知识库失败: {str(e)}")
print(f"批量删除知识库失败: {str(e)}")
raise Exception(f"批量删除知识库失败: {str(e)}")
@classmethod
@ -483,15 +419,14 @@ class KnowledgebaseService:
cursor.close()
conn.close()
print(results)
return {
'list': results,
'total': total
}
except Exception as e:
current_app.logger.error(f"获取知识库文档列表失败: {str(e)}")
print(f"获取知识库文档列表失败: {str(e)}")
raise Exception(f"获取知识库文档列表失败: {str(e)}")
@classmethod
@ -727,528 +662,135 @@ class KnowledgebaseService:
raise Exception(f"删除文档失败: {str(e)}")
@classmethod
def parse_document(cls, doc_id, callback=None):
"""解析文档并提供进度反馈"""
def parse_document(cls, doc_id):
"""解析文档(同步版本,调用后台解析逻辑)"""
conn = None
cursor = None
try:
# 获取文档信息
# 1. 获取文档和文件信息
conn = cls._get_db_connection()
cursor = conn.cursor(dictionary=True)
# 查询文档信息
query = """
SELECT d.id, d.name, d.location, d.type, d.kb_id, d.parser_id, d.parser_config
doc_query = """
SELECT d.id, d.name, d.location, d.type, d.kb_id, d.parser_id, d.parser_config, d.created_by
FROM document d
WHERE d.id = %s
"""
cursor.execute(query, (doc_id,))
doc = cursor.fetchone()
if not doc:
raise Exception("文档不存在")
# 更新文档状态为处理中
update_query = """
UPDATE document
SET status = '2', run = '1', progress = 0.0, progress_msg = '开始解析'
WHERE id = %s
"""
cursor.execute(update_query, (doc_id,))
conn.commit()
cursor.execute(doc_query, (doc_id,))
doc_info = cursor.fetchone()
# 获取文件ID和桶ID
if not doc_info:
raise Exception("文档不存在")
# 获取关联的文件信息 (主要是 parent_id 作为 bucket_name)
f2d_query = "SELECT file_id FROM file2document WHERE document_id = %s"
cursor.execute(f2d_query, (doc_id,))
f2d_result = cursor.fetchone()
if not f2d_result:
raise Exception("无法找到文件到文档的映射关系")
file_id = f2d_result['file_id']
file_query = "SELECT parent_id FROM file WHERE id = %s"
cursor.execute(file_query, (file_id,))
file_result = cursor.fetchone()
if not file_result:
file_info = cursor.fetchone()
if not file_info:
raise Exception("无法找到文件记录")
bucket_name = file_result['parent_id']
# 创建 MinIO 客户端
minio_client = get_minio_client()
# 检查桶是否存在
if not minio_client.bucket_exists(bucket_name):
raise Exception(f"存储桶不存在: {bucket_name}")
# 进度更新函数
def update_progress(prog=None, msg=None):
if prog is not None:
progress_query = "UPDATE document SET progress = %s WHERE id = %s"
cursor.execute(progress_query, (float(prog), doc_id))
conn.commit()
if msg is not None:
msg_query = "UPDATE document SET progress_msg = %s WHERE id = %s"
cursor.execute(msg_query, (msg, doc_id))
conn.commit()
if callback:
callback(prog, msg, doc_id)
# 从 MinIO 获取文件内容
file_location = doc['location']
try:
update_progress(0.1, f"正在从存储中获取文件: {file_location}")
response = minio_client.get_object(bucket_name, file_location)
file_content = response.read()
response.close()
update_progress(0.2, "文件获取成功,准备解析")
except Exception as e:
raise Exception(f"无法从存储中获取文件: {file_location}, 错误: {str(e)}")
# 解析配置
parser_config = json.loads(doc['parser_config']) if isinstance(doc['parser_config'], str) else doc['parser_config']
# 根据文件类型选择解析器
file_type = doc['type'].lower()
chunks = []
update_progress(0.2, "正在识别文档类型")
# 使用magic_pdf进行解析
if file_type.endswith('pdf'):
update_progress(0.3, "使用Magic PDF解析器")
# 创建临时文件保存PDF内容(路径C:\Users\username\AppData\Local\Temp)
temp_dir = tempfile.gettempdir()
temp_pdf_path = os.path.join(temp_dir, f"{doc_id}.pdf")
with open(temp_pdf_path, 'wb') as f:
f.write(file_content)
try:
# 使用您的脚本中的方法处理PDF
def magic_callback(prog, msg):
# 将进度映射到20%-90%范围
actual_prog = 0.2 + prog * 0.7
update_progress(actual_prog, msg)
# 初始化数据读取器
reader = FileBasedDataReader("")
pdf_bytes = reader.read(temp_pdf_path)
# 创建PDF数据集实例
ds = PymuDocDataset(pdf_bytes)
# 根据PDF类型选择处理方法
update_progress(0.3, "分析PDF类型")
if ds.classify() == SupportedPdfParseMethod.OCR:
update_progress(0.4, "使用OCR模式处理PDF")
infer_result = ds.apply(doc_analyze, ocr=True)
# 设置临时输出目录
temp_image_dir = os.path.join(temp_dir, f"images_{doc_id}")
os.makedirs(temp_image_dir, exist_ok=True)
image_writer = FileBasedDataWriter(temp_image_dir)
update_progress(0.6, "处理OCR结果")
pipe_result = infer_result.pipe_ocr_mode(image_writer)
else:
update_progress(0.4, "使用文本模式处理PDF")
infer_result = ds.apply(doc_analyze, ocr=False)
# 设置临时输出目录
temp_image_dir = os.path.join(temp_dir, f"images_{doc_id}")
os.makedirs(temp_image_dir, exist_ok=True)
image_writer = FileBasedDataWriter(temp_image_dir)
update_progress(0.6, "处理文本结果")
pipe_result = infer_result.pipe_txt_mode(image_writer)
# 获取内容列表
update_progress(0.8, "提取内容")
content_list = pipe_result.get_content_list(os.path.basename(temp_image_dir))
print(f"开始保存解析结果到MinIO文档ID: {doc_id}")
# 处理内容列表
update_progress(0.95, "保存解析结果")
# 获取或创建MinIO桶
kb_id = doc['kb_id']
minio_client = get_minio_client()
if not minio_client.bucket_exists(kb_id):
minio_client.make_bucket(kb_id)
print(f"创建MinIO桶: {kb_id}")
# 使用content_list而不是chunks变量
print(f"解析得到内容块数量: {len(content_list)}")
# 处理内容列表并创建文档块
document_info = {
"doc_id": doc_id,
"doc_name": doc['name'],
"kb_id": kb_id
}
# TODO: 对于块的预处理
# 合并内容块
# chunk_token_num = parser_config.get("chunk_token_num", 512)
# delimiter = parser_config.get("delimiter", "\n!?;。;!?")
# merged_chunks = merge_chunks(content_list, chunk_token_num, delimiter)
# 处理文档块
# processed_chunks = process_document_chunks(merged_chunks, document_info)
# 直接使用原始内容列表,不进行合并和处理
# processed_chunks = []
print(f"[DEBUG] 开始处理内容列表,共 {len(content_list)} 个原始内容块")
# for i, content in enumerate(content_list):
# if not content.strip():
# continue
# chunk_data = document_info.copy()
# chunk_data["content"] = content
# chunk_data["tokens"] = tokenize_text(content)
# processed_chunks.append(chunk_data)
cursor.close()
conn.close()
conn = None # 确保连接已关闭
print(f"[DEBUG] 开始上传到MinIO目标桶: {kb_id}")
# 获取Elasticsearch客户端
es_client = get_es_client()
# 获取tenant_id (文档创建者id)
tenant_query = """
SELECT created_by FROM document WHERE id = %s
"""
cursor.execute(tenant_query, (doc_id,))
tenant_result = cursor.fetchone()
tenant_id = tenant_result['created_by']
print(f"[DEBUG] 文档 {doc_id} 的tenant_id: {tenant_id}")
# 2. 更新文档状态为处理中 (使用 parser 模块的函数)
_update_document_progress(doc_id, status='2', run='1', progress=0.0, message='开始解析')
# 确保索引存在
index_name = f"ragflow_{tenant_id}"
if not es_client.indices.exists(index=index_name):
# 创建索引设置为0个副本
es_client.indices.create(
index=index_name,
body={
"settings": {
"number_of_shards": 2,
"number_of_replicas": 0 # 单节点环境设置为0个副本
},
"mappings": {
"properties": {
"doc_id": {"type": "keyword"},
"kb_id": {"type": "keyword"},
"docnm_kwd": {"type": "keyword"},
"title_tks": {"type": "keyword"},
"title_sm_tks": {"type": "keyword"},
"content_with_weight": {"type": "text"},
"content_ltks": {"type": "keyword"},
"content_sm_ltks": {"type": "keyword"},
"page_num_int": {"type": "integer"},
"position_int": {"type": "integer"},
"top_int": {"type": "integer"},
"create_time": {"type": "date", "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"},
"create_timestamp_flt": {"type": "float"},
"img_id": {"type": "keyword"},
"q_1024_vec": {"type": "keyword"}
}
}
}
)
# 3. 调用后台解析函数
parse_result = perform_parse(doc_id, doc_info, file_info)
# 处理内容块并上传到MinIO
chunk_count = 0
chunk_ids_list = []
for chunk_idx, chunk_data in enumerate(content_list):
if chunk_data["type"] == "text":
content = chunk_data["text"]
if not content.strip():
print(f"[DEBUG] 跳过空文本块 {chunk_idx}")
continue
# 生成唯一ID
chunk_id = generate_uuid()
try:
# 1. 上传到MinIO
minio_client.put_object(
bucket_name=kb_id,
object_name=chunk_id,
data=BytesIO(content.encode('utf-8')),
length=len(content)
)
# 分词处理
content_tokens = tokenize_text(content)
# 获取当前时间
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
current_timestamp = datetime.now().timestamp()
# 创建Elasticsearch文档
es_doc = {
"doc_id": doc_id,
"kb_id": kb_id,
"docnm_kwd": doc['name'],
"title_tks": doc['name'], # 简化处理,使用文档名作为标题
"title_sm_tks": doc['name'], # 简化处理
"content_with_weight": content,
"content_ltks": content_tokens,
"content_sm_ltks": content_tokens, # 简化处理
"page_num_int": [1], # 默认页码
"position_int": [[1, 0, 0, 0, 0]], # 默认位置
"top_int": [1], # 默认顶部位置
"create_time": current_time,
"create_timestamp_flt": current_timestamp,
"img_id": "", # 如果没有图片,置空
"q_1024_vec": []
}
# 2. 存储到Elasticsearch
es_client.index(
index=index_name,
# id=es_chunk_id,
body=es_doc
)
chunk_count += 1
chunk_ids_list.append(chunk_id)
print(f"成功上传文本块 {chunk_count}/{len(content_list)}")
except Exception as e:
print(f"上传文本块失败: {str(e)}")
continue
elif chunk_data["type"] == "image":
print(f"[INFO] 处理图像块: {chunk_data['img_path']}")
try:
# 获取图片路径
img_path = chunk_data['img_path']
# 4. 返回解析结果
return parse_result
# 检查是否为相对路径,如果是则添加临时目录前缀
if not os.path.isabs(img_path):
# 使用临时图片目录作为基础路径
img_path = os.path.join(temp_image_dir, os.path.basename(img_path))
print(f"[INFO] 转换为绝对路径: {img_path}")
if os.path.exists(img_path):
# 生成图片ID和存储路径
img_id = generate_uuid()
img_key = f"images/{img_id}{os.path.splitext(img_path)[1]}"
# 读取图片内容
with open(img_path, 'rb') as img_file:
img_data = img_file.read()
# 设置图片的Content-Type
content_type = f"image/{os.path.splitext(img_path)[1][1:].lower()}"
if content_type == "image/jpg":
content_type = "image/jpeg"
# 上传图片到MinIO
minio_client.put_object(
bucket_name=kb_id,
object_name=img_key,
data=BytesIO(img_data),
length=len(img_data),
content_type=content_type
)
# 设置图片的公共访问权限
policy = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {"AWS": "*"},
"Action": ["s3:GetObject"],
"Resource": [f"arn:aws:s3:::{kb_id}/{img_key}"]
}
]
}
minio_client.set_bucket_policy(kb_id, json.dumps(policy))
print(f"[SUCCESS] 成功上传图片: {img_key}")
else:
print(f"[WARNING] 图片文件不存在: {img_path}")
except Exception as e:
print(f"[ERROR] 上传图片失败: {str(e)}")
continue
# 更新文档状态和块数量
final_update = """
UPDATE document
SET status = '1', run = '3', progress = 1.0,
progress_msg = '解析完成', chunk_num = %s,
process_duation = %s
WHERE id = %s
"""
cursor.execute(final_update, (chunk_count, 0.0, doc_id))
conn.commit()
print(f"[INFO] document表更新完成文档ID: {doc_id}")
current_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# 更新知识库文档数量
kb_update = """
UPDATE knowledgebase
SET chunk_num = chunk_num + %s,
update_date = %s
WHERE id = %s
"""
cursor.execute(kb_update, (chunk_count, current_date, kb_id))
conn.commit()
print(f"[INFO] knowledgebase表更新完成文档ID: {doc_id}")
# 生成task记录
task_id = generate_uuid()
# 获取当前时间
current_datetime = datetime.now()
current_timestamp = int(current_datetime.timestamp() * 1000) # 毫秒级时间戳
current_time = current_datetime.strftime("%Y-%m-%d %H:%M:%S") # 格式化日期时间
current_date_only = current_datetime.strftime("%Y-%m-%d") # 仅日期
digest = f"{doc_id}_{0}_{1}"
# 将chunk_ids列表转为JSON字符串
chunk_ids_str = ' '.join(chunk_ids_list)
task_insert = """
INSERT INTO task (
id, create_time, create_date, update_time, update_date,
doc_id, from_page, to_page, begin_at, process_duation,
progress, progress_msg, retry_count, digest, chunk_ids, task_type
) VALUES (
%s, %s, %s, %s, %s,
%s, %s, %s, %s, %s,
%s, %s, %s, %s, %s, %s
)
"""
task_params = [
task_id, current_timestamp, current_date_only, current_timestamp, current_date_only,
doc_id, 0, 1, None, 0.0,
1.0, "MinerU解析完成", 1, digest, chunk_ids_str, ""
]
cursor.execute(task_insert, task_params)
conn.commit()
update_progress(1.0, "解析完成")
print(f"[INFO] 解析完成文档ID: {doc_id}")
cursor.close()
conn.close()
# 清理临时文件
try:
os.remove(temp_pdf_path)
shutil.rmtree(temp_image_dir, ignore_errors=True)
except:
pass
return {
"success": True,
"chunk_count": chunk_count
}
except Exception as e:
print(f"出现异常: {str(e)}")
except Exception as e:
print(f"文档解析失败: {str(e)}")
# 更新文档状态为失败
print(f"文档解析启动或执行过程中出错 (Doc ID: {doc_id}): {str(e)}")
# 确保在异常时更新状态为失败
try:
error_update = """
UPDATE document
SET status = '1', run = '0', progress_msg = %s
WHERE id = %s
"""
cursor.execute(error_update, (f"解析失败: {str(e)}", doc_id))
conn.commit()
_update_document_progress(doc_id, status='1', run='0', message=f"解析失败: {str(e)}")
except Exception as update_err:
print(f"更新文档失败状态时出错 (Doc ID: {doc_id}): {str(update_err)}")
# 向上层抛出异常或返回错误信息
# raise Exception(f"文档解析失败: {str(e)}")
return {"success": False, "error": f"文档解析失败: {str(e)}"}
finally:
if cursor:
cursor.close()
if conn:
conn.close()
except:
pass
raise Exception(f"文档解析失败: {str(e)}")
@classmethod
def async_parse_document(cls, doc_id):
"""异步解析文档"""
try:
# 先立即返回响应,表示任务已开始
# 启动后台线程执行同步的 parse_document 方法
thread = threading.Thread(target=cls.parse_document, args=(doc_id,))
thread.daemon = True
thread.daemon = True # 设置为守护线程,主程序退出时线程也退出
thread.start()
# 立即返回,表示任务已提交
return {
"task_id": doc_id,
"task_id": doc_id, # 使用 doc_id 作为任务标识符
"status": "processing",
"message": "文档解析已开始"
"message": "文档解析任务已提交到后台处理"
}
except Exception as e:
current_app.logger.error(f"启动解析任务失败: {str(e)}")
raise Exception(f"启动解析任务失败: {str(e)}")
print(f"启动异步解析任务失败 (Doc ID: {doc_id}): {str(e)}")
# 可以在这里尝试更新文档状态为失败
try:
_update_document_progress(doc_id, status='1', run='0', message=f"启动解析失败: {str(e)}")
except Exception as update_err:
print(f"更新文档启动失败状态时出错 (Doc ID: {doc_id}): {str(update_err)}")
raise Exception(f"启动异步解析任务失败: {str(e)}")
@classmethod
@classmethod
def get_document_parse_progress(cls, doc_id):
"""获取文档解析进度 - 添加缓存机制"""
# 正常数据库查询
conn = cls._get_db_connection()
cursor = conn.cursor(dictionary=True)
query = """
SELECT progress, progress_msg, status, run
FROM document
WHERE id = %s
"""
cursor.execute(query, (doc_id,))
result = cursor.fetchone()
cursor.close()
conn.close()
if not result:
return {"error": "文档不存在"}
return {
"progress": float(result["progress"]),
"message": result["progress_msg"],
"status": result["status"],
"running": result["run"] == "1"
}
"""获取文档解析进度
Args:
doc_id: 文档ID
Returns:
解析进度信息
"""
conn = cls._get_db_connection()
cursor = conn.cursor(dictionary=True)
query = """
SELECT progress, progress_msg, status, run
FROM document
WHERE id = %s
"""
cursor.execute(query, (doc_id,))
result = cursor.fetchone()
cursor.close()
conn.close()
if not result:
return {"error": "文档不存在"}
return {
"progress": float(result["progress"]),
"message": result["progress_msg"],
"status": result["status"],
"running": result["run"] == "1"
}
"""获取文档解析进度"""
conn = None
cursor = None
try:
conn = cls._get_db_connection()
cursor = conn.cursor(dictionary=True)
query = """
SELECT progress, progress_msg, status, run
FROM document
WHERE id = %s
"""
cursor.execute(query, (doc_id,))
result = cursor.fetchone()
if not result:
return {"error": "文档不存在"}
# 确保 progress 是浮点数
progress_value = 0.0
if result.get("progress") is not None:
try:
progress_value = float(result["progress"])
except (ValueError, TypeError):
progress_value = 0.0 # 或记录错误
return {
"progress": progress_value,
"message": result.get("progress_msg", ""),
"status": result.get("status", "0"),
"running": result.get("run", "0"),
}
except Exception as e:
print(f"获取文档进度失败 (Doc ID: {doc_id}): {str(e)}")
return {"error": f"获取进度失败: {str(e)}"}
finally:
if cursor:
cursor.close()
if conn:
conn.close()

View File

@ -1,7 +1,7 @@
# 开发环境的环境变量(命名必须以 VITE_ 开头)
## 后端接口地址(如果解决跨域问题采用反向代理就只需写相对路径)
VITE_BASE_URL = http://localhost:5000
VITE_BASE_URL = ""
## 开发环境域名和静态资源公共路径(一般 / 或 ./ 都可以)
VITE_PUBLIC_PATH = /

View File

@ -1,3 +1,4 @@
<!-- eslint-disable vue/custom-event-name-casing -->
<script>
import { getDocumentParseProgress } from "@@/apis/kbs/document"
@ -118,11 +119,10 @@ export default {
}
//
if (data.status === "1" && !data.running) {
if (data.running === "3") {
this.isCompleted = true
this.progressStatus = "success"
this.stopPolling()
// eslint-disable-next-line vue/custom-event-name-casing
this.$emit("parse-complete")
}
@ -131,7 +131,6 @@ export default {
this.hasError = true
this.progressStatus = "exception"
this.stopPolling()
// eslint-disable-next-line vue/custom-event-name-casing
this.$emit("parse-failed", data.message || "解析失败")
}
}