feat(write): 实现 AI 流式回答功能并优化编辑器交互
- 新增流式消息发送钩子和相关状态管理 - 实时更新编辑器内容,支持 <think> 标签显示 - 优化光标位置管理和内容插入逻辑 - 增加 AI 回答中断处理和用户输入时的流式输出中断 - 调整预览模式下的内容显示 - 优化 AI 回答状态的 UI 提示
This commit is contained in:
parent
cfab4bc7bf
commit
a117d68df0
|
@ -30,13 +30,14 @@ from api.db.services.dialog_service import DialogService, chat, ask
|
|||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle, TenantService
|
||||
from api import settings
|
||||
from api.db.services.write_service import write_dialog
|
||||
from api.utils.api_utils import get_json_result
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from graphrag.general.mind_map_extractor import MindMapExtractor
|
||||
from rag.app.tag import label_question
|
||||
|
||||
|
||||
@manager.route("/set", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/set", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
def set_conversation():
|
||||
req = request.json
|
||||
|
@ -67,7 +68,7 @@ def set_conversation():
|
|||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route("/get", methods=["GET"]) # noqa: F821
|
||||
@manager.route("/get", methods=["GET"]) # type: ignore # type: ignore # noqa: F821
|
||||
@login_required
|
||||
def get():
|
||||
conv_id = request.args["conversation_id"]
|
||||
|
@ -132,7 +133,7 @@ def getsse(dialog_id):
|
|||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route("/rm", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/rm", methods=["POST"]) # type: ignore # type: ignore # noqa: F821
|
||||
@login_required
|
||||
def rm():
|
||||
conv_ids = request.json["conversation_ids"]
|
||||
|
@ -153,7 +154,7 @@ def rm():
|
|||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route("/list", methods=["GET"]) # noqa: F821
|
||||
@manager.route("/list", methods=["GET"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
def list_convsersation():
|
||||
dialog_id = request.args["dialog_id"]
|
||||
|
@ -168,7 +169,7 @@ def list_convsersation():
|
|||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route("/completion", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/completion", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
@validate_request("conversation_id", "messages")
|
||||
def completion():
|
||||
|
@ -251,7 +252,7 @@ def completion():
|
|||
|
||||
|
||||
# 用于文档撰写模式的问答调用
|
||||
@manager.route("/writechat", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/writechat", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
@validate_request("question", "kb_ids")
|
||||
def writechat():
|
||||
|
@ -261,7 +262,7 @@ def writechat():
|
|||
def stream():
|
||||
nonlocal req, uid
|
||||
try:
|
||||
for ans in ask(req["question"], req["kb_ids"], uid):
|
||||
for ans in write_dialog(req["question"], req["kb_ids"], uid):
|
||||
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
|
||||
except Exception as e:
|
||||
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
|
||||
|
@ -275,7 +276,7 @@ def writechat():
|
|||
return resp
|
||||
|
||||
|
||||
@manager.route("/tts", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/tts", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
def tts():
|
||||
req = request.json
|
||||
|
@ -307,7 +308,7 @@ def tts():
|
|||
return resp
|
||||
|
||||
|
||||
@manager.route("/delete_msg", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/delete_msg", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
@validate_request("conversation_id", "message_id")
|
||||
def delete_msg():
|
||||
|
@ -330,7 +331,7 @@ def delete_msg():
|
|||
return get_json_result(data=conv)
|
||||
|
||||
|
||||
@manager.route("/thumbup", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/thumbup", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
@validate_request("conversation_id", "message_id")
|
||||
def thumbup():
|
||||
|
@ -357,7 +358,7 @@ def thumbup():
|
|||
return get_json_result(data=conv)
|
||||
|
||||
|
||||
@manager.route("/ask", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/ask", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
@validate_request("question", "kb_ids")
|
||||
def ask_about():
|
||||
|
@ -381,7 +382,7 @@ def ask_about():
|
|||
return resp
|
||||
|
||||
|
||||
@manager.route("/mindmap", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/mindmap", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
@validate_request("question", "kb_ids")
|
||||
def mindmap():
|
||||
|
@ -403,7 +404,7 @@ def mindmap():
|
|||
return get_json_result(data=mind_map)
|
||||
|
||||
|
||||
@manager.route("/related_questions", methods=["POST"]) # noqa: F821
|
||||
@manager.route("/related_questions", methods=["POST"]) # type: ignore # noqa: F821
|
||||
@login_required
|
||||
@validate_request("question")
|
||||
def related_questions():
|
||||
|
|
|
@ -0,0 +1,91 @@
|
|||
from api.db import LLMType, ParserType
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api import settings
|
||||
from rag.app.tag import label_question
|
||||
from rag.prompts import kb_prompt
|
||||
|
||||
|
||||
def write_dialog(question, kb_ids, tenant_id):
|
||||
"""
|
||||
处理用户搜索请求,从知识库中检索相关信息并生成回答
|
||||
|
||||
参数:
|
||||
question (str): 用户的问题或查询
|
||||
kb_ids (list): 知识库ID列表,指定要搜索的知识库
|
||||
tenant_id (str): 租户ID,用于权限控制和资源隔离
|
||||
|
||||
流程:
|
||||
1. 获取指定知识库的信息
|
||||
2. 确定使用的嵌入模型
|
||||
3. 根据知识库类型选择检索器(普通检索器或知识图谱检索器)
|
||||
4. 初始化嵌入模型和聊天模型
|
||||
5. 执行检索操作获取相关文档片段
|
||||
6. 格式化知识库内容作为上下文
|
||||
7. 构建系统提示词
|
||||
8. 生成回答并添加引用标记
|
||||
9. 流式返回生成的回答
|
||||
|
||||
返回:
|
||||
generator: 生成器对象,产生包含回答和引用信息的字典
|
||||
"""
|
||||
|
||||
kbs = KnowledgebaseService.get_by_ids(kb_ids)
|
||||
embedding_list = list(set([kb.embd_id for kb in kbs]))
|
||||
|
||||
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
|
||||
# 初始化嵌入模型,用于将文本转换为向量表示
|
||||
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
|
||||
# 初始化聊天模型,用于生成回答
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
||||
# 获取聊天模型的最大token长度,用于控制上下文长度
|
||||
max_tokens = chat_mdl.max_length
|
||||
# 获取所有知识库的租户ID并去重
|
||||
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
|
||||
# 调用检索器检索相关文档片段
|
||||
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False, rank_feature=label_question(question, kbs))
|
||||
# 将检索结果格式化为提示词,并确保不超过模型最大token限制
|
||||
knowledges = kb_prompt(kbinfos, max_tokens)
|
||||
prompt = """
|
||||
角色:你是一个聪明的助手。
|
||||
任务:总结知识库中的信息并回答用户的问题。
|
||||
要求与限制:
|
||||
- 绝不要捏造内容,尤其是数字。
|
||||
- 如果知识库中的信息与用户问题无关,**只需回答:对不起,未提供相关信息。
|
||||
- 使用Markdown格式进行回答。
|
||||
- 使用用户提问所用的语言作答。
|
||||
- 绝不要捏造内容,尤其是数字。
|
||||
|
||||
### 来自知识库的信息
|
||||
%s
|
||||
|
||||
以上是来自知识库的信息。
|
||||
|
||||
""" % "\n".join(knowledges)
|
||||
msg = [{"role": "user", "content": question}]
|
||||
|
||||
# 生成完成后添加回答中的引用标记
|
||||
# def decorate_answer(answer):
|
||||
# nonlocal knowledges, kbinfos, prompt
|
||||
# answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3)
|
||||
# idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
|
||||
# recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
|
||||
# if not recall_docs:
|
||||
# recall_docs = kbinfos["doc_aggs"]
|
||||
# kbinfos["doc_aggs"] = recall_docs
|
||||
# refs = deepcopy(kbinfos)
|
||||
# for c in refs["chunks"]:
|
||||
# if c.get("vector"):
|
||||
# del c["vector"]
|
||||
|
||||
# if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
|
||||
# answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
|
||||
# refs["chunks"] = chunks_format(refs)
|
||||
# return {"answer": answer, "reference": refs}
|
||||
|
||||
answer = ""
|
||||
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
|
||||
answer = ans
|
||||
yield {"answer": answer, "reference": {}}
|
||||
# yield decorate_answer(answer)
|
|
@ -0,0 +1,6 @@
|
|||
<?xml version="1.0" encoding="utf-8"?><!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
|
||||
<svg fill="#000000" width="800px" height="800px" viewBox="0 0 36 36" version="1.1" preserveAspectRatio="xMidYMid meet" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
|
||||
<title>storage-solid</title>
|
||||
<path class="clr-i-solid clr-i-solid-path-1" d="M17.91,18.28c8.08,0,14.66-1.74,15.09-3.94V8.59c-.43,2.2-7,3.94-15.09,3.94A39.4,39.4,0,0,1,6.25,11V9a39.4,39.4,0,0,0,11.66,1.51C26,10.53,32.52,8.79,33,6.61h0C32.8,3.2,23.52,2.28,18,2.28S3,3.21,3,6.71V29.29c0,3.49,9.43,4.43,15,4.43s15-.93,15-4.43V24.09C32.57,26.28,26,28,17.91,28A39.4,39.4,0,0,1,6.25,26.52v-2A39.4,39.4,0,0,0,17.91,26C26,26,32.57,24.28,33,22.09V16.34c-.43,2.2-7,3.94-15.09,3.94A39.4,39.4,0,0,1,6.25,18.77v-2A39.4,39.4,0,0,0,17.91,18.28Z"></path>
|
||||
<rect x="0" y="0" width="36" height="36" fill-opacity="0"/>
|
||||
</svg>
|
After Width: | Height: | Size: 934 B |
|
@ -591,6 +591,7 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
|||
decisions: '决定事项',
|
||||
actionItems: '行动项',
|
||||
nextMeeting: '下次会议',
|
||||
noTemplatesAvailable: "没有可用模板",
|
||||
// 模型配置相关
|
||||
modelConfigurationTitle: "模型配置",
|
||||
knowledgeBaseLabel: "知识库",
|
||||
|
@ -601,6 +602,7 @@ General:实体和关系提取提示来自 GitHub - microsoft/graphrag:基于
|
|||
fetchKnowledgeBaseFailed: "获取知识库列表失败",
|
||||
defaultKnowledgeBase: "默认知识库",
|
||||
technicalDocsKnowledgeBase: "技术文档知识库",
|
||||
aiRequestFailedError: "问答模型请求失败",
|
||||
},
|
||||
setting: {
|
||||
profile: '概要',
|
||||
|
|
|
@ -1,6 +1,10 @@
|
|||
import HightLightMarkdown from '@/components/highlight-markdown';
|
||||
import { useTranslate } from '@/hooks/common-hooks';
|
||||
import { useFetchKnowledgeList } from '@/hooks/write-hooks';
|
||||
import {
|
||||
useFetchKnowledgeList,
|
||||
useSendMessageWithSse,
|
||||
} from '@/hooks/write-hooks';
|
||||
|
||||
import { DeleteOutlined } from '@ant-design/icons';
|
||||
import {
|
||||
Button,
|
||||
|
@ -33,7 +37,6 @@ import { useCallback, useEffect, useRef, useState } from 'react';
|
|||
|
||||
const { Sider, Content } = Layout;
|
||||
const { Option } = Select;
|
||||
const aiAssistantConfig = { api: { timeout: 30000 } };
|
||||
|
||||
const LOCAL_STORAGE_TEMPLATES_KEY = 'userWriteTemplates_v4_no_restore_final';
|
||||
const LOCAL_STORAGE_INIT_FLAG_KEY =
|
||||
|
@ -56,15 +59,22 @@ type MarkedListItem = Tokens.ListItem;
|
|||
type MarkedListToken = Tokens.List;
|
||||
type MarkedSpaceToken = Tokens.Space;
|
||||
|
||||
// 定义插入点标记,以便在onChange时识别并移除
|
||||
// const INSERTION_MARKER = '【AI内容将插入此处】';
|
||||
const INSERTION_MARKER = ''; // 保持为空字符串,不显示实际标记
|
||||
|
||||
const Write = () => {
|
||||
const { t } = useTranslate('write');
|
||||
const [content, setContent] = useState('');
|
||||
const [aiQuestion, setAiQuestion] = useState('');
|
||||
const [isAiLoading, setIsAiLoading] = useState(false);
|
||||
const [dialogId] = useState('');
|
||||
// cursorPosition 存储用户点击设定的插入点位置
|
||||
const [cursorPosition, setCursorPosition] = useState<number | null>(null);
|
||||
// showCursorIndicator 现在仅用于控制文档中是否显示 'INSERTION_MARKER',
|
||||
// 并且一旦设置了光标位置,就希望它保持为 true,除非内容被清空或主动重置。
|
||||
const [showCursorIndicator, setShowCursorIndicator] = useState(false);
|
||||
const textAreaRef = useRef<HTMLTextAreaElement>(null);
|
||||
const textAreaRef = useRef<any>(null); // Ant Design Input.TextArea 的 ref 类型
|
||||
|
||||
const [templates, setTemplates] = useState<TemplateItem[]>([]);
|
||||
const [isTemplateModalVisible, setIsTemplateModalVisible] = useState(false);
|
||||
|
@ -83,11 +93,28 @@ const Write = () => {
|
|||
const [modelTemperature, setModelTemperature] = useState<number>(0.7);
|
||||
const [knowledgeBases, setKnowledgeBases] = useState<KnowledgeBaseItem[]>([]);
|
||||
const [isLoadingKbs, setIsLoadingKbs] = useState(false);
|
||||
const [isStreaming, setIsStreaming] = useState(false); // 标记AI是否正在流式输出
|
||||
|
||||
// 新增状态和 useRef,用于流式输出管理
|
||||
// currentStreamedAiOutput 现在将直接接收 useSendMessageWithSse 返回的累积内容
|
||||
const [currentStreamedAiOutput, setCurrentStreamedAiOutput] = useState('');
|
||||
// 使用 useRef 存储 AI 插入点前后的内容,以及插入点位置,避免在流式更新中出现闭包陷阱
|
||||
const contentBeforeAiInsertionRef = useRef('');
|
||||
const contentAfterAiInsertionRef = useRef('');
|
||||
const aiInsertionStartPosRef = useRef<number | null>(null);
|
||||
|
||||
// 使用 useFetchKnowledgeList hook 获取真实数据
|
||||
const { list: knowledgeList, loading: isLoadingKnowledgeList } =
|
||||
useFetchKnowledgeList(true);
|
||||
|
||||
// 使用流式消息发送钩子
|
||||
const {
|
||||
send: sendMessage,
|
||||
answer,
|
||||
done,
|
||||
stopOutputMessage,
|
||||
} = useSendMessageWithSse();
|
||||
|
||||
const getInitialDefaultTemplateDefinitions = useCallback(
|
||||
(): TemplateItem[] => [
|
||||
{
|
||||
|
@ -184,6 +211,88 @@ const Write = () => {
|
|||
}
|
||||
}, [knowledgeList, isLoadingKnowledgeList]);
|
||||
|
||||
// --- 调整流式响应处理逻辑 ---
|
||||
// 阶段1: 累积 AI 输出片段,用于实时显示(包括 <think> 标签)
|
||||
// 这个 useEffect 确保 currentStreamedAiOutput 始终是实时更新的、包含 <think> 标签的完整内容
|
||||
useEffect(() => {
|
||||
if (isStreaming && answer && answer.answer) {
|
||||
setCurrentStreamedAiOutput(answer.answer);
|
||||
}
|
||||
}, [isStreaming, answer]);
|
||||
|
||||
// 阶段2: 当流式输出完成时 (done 为 true)
|
||||
// 这个 useEffect 负责在流式输出结束时执行清理和最终内容更新
|
||||
useEffect(() => {
|
||||
if (done) {
|
||||
setIsStreaming(false);
|
||||
setIsAiLoading(false);
|
||||
|
||||
// --- Process the final streamed AI output before committing ---
|
||||
// 关键修改:这里**必须**使用 currentStreamedAiOutput,因为它是在流式过程中积累的、包含 <think> 标签的内容
|
||||
// answer.answer 可能在 done 阶段已经提前被钩子内部清理过,所以不能依赖它来获取带标签的原始内容。
|
||||
let processedAiOutput = currentStreamedAiOutput;
|
||||
if (processedAiOutput) {
|
||||
// Regex to remove <think>...</think> including content
|
||||
processedAiOutput = processedAiOutput.replace(
|
||||
/<think>.*?<\/think>/gs,
|
||||
'',
|
||||
);
|
||||
}
|
||||
// --- END NEW ---
|
||||
|
||||
// 将最终累积的AI内容(已处理移除<think>标签)和初始文档内容拼接,更新到主内容状态
|
||||
setContent((prevContent) => {
|
||||
if (aiInsertionStartPosRef.current !== null) {
|
||||
// 使用 useRef 中存储的初始内容和最终处理过的 AI 输出
|
||||
const finalContent =
|
||||
contentBeforeAiInsertionRef.current +
|
||||
processedAiOutput +
|
||||
contentAfterAiInsertionRef.current;
|
||||
return finalContent;
|
||||
}
|
||||
return prevContent;
|
||||
});
|
||||
|
||||
// AI完成回答后,将光标实际移到新内容末尾
|
||||
if (
|
||||
textAreaRef.current?.resizableTextArea?.textArea &&
|
||||
aiInsertionStartPosRef.current !== null
|
||||
) {
|
||||
const newCursorPos =
|
||||
aiInsertionStartPosRef.current + processedAiOutput.length;
|
||||
textAreaRef.current.resizableTextArea.textArea.selectionStart =
|
||||
newCursorPos;
|
||||
textAreaRef.current.resizableTextArea.textArea.selectionEnd =
|
||||
newCursorPos;
|
||||
textAreaRef.current.resizableTextArea.textArea.focus();
|
||||
setCursorPosition(newCursorPos);
|
||||
}
|
||||
|
||||
// 清理流式相关的临时状态和 useRef
|
||||
setCurrentStreamedAiOutput(''); // 清空累积内容
|
||||
contentBeforeAiInsertionRef.current = '';
|
||||
contentAfterAiInsertionRef.current = '';
|
||||
aiInsertionStartPosRef.current = null;
|
||||
setShowCursorIndicator(true);
|
||||
}
|
||||
}, [done, currentStreamedAiOutput]); // 依赖 done 和 currentStreamedAiOutput,确保在 done 时拿到最新的 currentStreamedAiOutput
|
||||
|
||||
// 监听 currentStreamedAiOutput 的变化,实时更新主 content 状态以实现流式显示
|
||||
useEffect(() => {
|
||||
if (isStreaming && aiInsertionStartPosRef.current !== null) {
|
||||
// 实时更新编辑器内容,保留 <think> 标签内容
|
||||
setContent(
|
||||
contentBeforeAiInsertionRef.current +
|
||||
currentStreamedAiOutput +
|
||||
contentAfterAiInsertionRef.current,
|
||||
);
|
||||
// 同时更新 cursorPosition,让光标跟随 AI 输出移动(基于包含 think 标签的原始长度)
|
||||
setCursorPosition(
|
||||
aiInsertionStartPosRef.current + currentStreamedAiOutput.length,
|
||||
);
|
||||
}
|
||||
}, [currentStreamedAiOutput, isStreaming, aiInsertionStartPosRef]);
|
||||
|
||||
useEffect(() => {
|
||||
const loadDraftContent = () => {
|
||||
try {
|
||||
|
@ -206,6 +315,7 @@ const Write = () => {
|
|||
}, [content, selectedTemplate, templates]);
|
||||
|
||||
useEffect(() => {
|
||||
// 防抖保存,防止频繁写入 localStorage
|
||||
const timer = setTimeout(
|
||||
() => localStorage.setItem('writeDraftContent', content),
|
||||
1000,
|
||||
|
@ -276,6 +386,51 @@ const Write = () => {
|
|||
}
|
||||
};
|
||||
|
||||
// 获取上下文内容的辅助函数
|
||||
const getContextContent = (
|
||||
cursorPos: number,
|
||||
currentDocumentContent: string,
|
||||
maxLength: number = 4000,
|
||||
) => {
|
||||
// 注意: 这里的 currentDocumentContent 传入的是 AI 提问时编辑器里的总内容,
|
||||
// 而不是 contentBeforeAiInsertionRef + contentAfterAiInsertionRef,因为可能包含标记
|
||||
const beforeCursor = currentDocumentContent.substring(0, cursorPos);
|
||||
const afterCursor = currentDocumentContent.substring(cursorPos);
|
||||
|
||||
// 使用更明显的插入点标记,这个标记是给AI看的,不是给用户看的
|
||||
const insertMarker = '[AI 内容插入点]';
|
||||
const availableLength = maxLength - insertMarker.length;
|
||||
|
||||
if (currentDocumentContent.length <= availableLength) {
|
||||
return {
|
||||
beforeCursor,
|
||||
afterCursor,
|
||||
contextContent: beforeCursor + insertMarker + afterCursor,
|
||||
};
|
||||
}
|
||||
|
||||
const halfLength = Math.floor(availableLength / 2);
|
||||
let finalBefore = beforeCursor;
|
||||
let finalAfter = afterCursor;
|
||||
|
||||
// 如果前半部分太长,截断并在前面加省略号
|
||||
if (beforeCursor.length > halfLength) {
|
||||
finalBefore =
|
||||
'...' + beforeCursor.substring(beforeCursor.length - halfLength + 3);
|
||||
}
|
||||
|
||||
// 如果后半部分太长,截断并在后面加省略号
|
||||
if (afterCursor.length > halfLength) {
|
||||
finalAfter = afterCursor.substring(0, halfLength - 3) + '...';
|
||||
}
|
||||
|
||||
return {
|
||||
beforeCursor,
|
||||
afterCursor,
|
||||
contextContent: finalBefore + insertMarker + finalAfter,
|
||||
};
|
||||
};
|
||||
|
||||
const handleAiQuestionSubmit = async (
|
||||
e: React.KeyboardEvent<HTMLTextAreaElement>,
|
||||
) => {
|
||||
|
@ -286,27 +441,105 @@ const Write = () => {
|
|||
return;
|
||||
}
|
||||
|
||||
setIsAiLoading(true);
|
||||
const initialCursorPos = cursorPosition;
|
||||
const originalContent = content;
|
||||
let beforeCursor = '',
|
||||
afterCursor = '';
|
||||
if (initialCursorPos !== null && showCursorIndicator) {
|
||||
beforeCursor = originalContent.substring(0, initialCursorPos);
|
||||
afterCursor = originalContent.substring(initialCursorPos);
|
||||
// 检查是否选择了知识库
|
||||
if (selectedKnowledgeBases.length === 0) {
|
||||
message.warning('请至少选择一个知识库');
|
||||
return;
|
||||
}
|
||||
const controller = new AbortController();
|
||||
const timeoutId = setTimeout(
|
||||
() => controller.abort(),
|
||||
aiAssistantConfig.api.timeout || 30000,
|
||||
|
||||
// 如果AI正在流式输出,停止它,并处理新问题
|
||||
if (isStreaming) {
|
||||
stopOutputMessage(); // 停止当前的流式输出
|
||||
setIsStreaming(false); // 立即设置为false,中断流
|
||||
setIsAiLoading(false); // 确保加载状态也停止
|
||||
|
||||
// 中断时立即清除流中的 <think> 标签,并更新主内容
|
||||
// 这里使用 currentStreamedAiOutput 作为基准来构建中断时的内容,
|
||||
// 因为它是屏幕上实际显示的,包含了 <think> 标签。
|
||||
const contentToCleanOnInterrupt =
|
||||
contentBeforeAiInsertionRef.current +
|
||||
currentStreamedAiOutput +
|
||||
contentAfterAiInsertionRef.current;
|
||||
const cleanedContent = contentToCleanOnInterrupt.replace(
|
||||
/<think>.*?<\/think>/gs,
|
||||
'',
|
||||
);
|
||||
setContent(cleanedContent);
|
||||
|
||||
setCurrentStreamedAiOutput(''); // 清除旧的流式内容
|
||||
contentBeforeAiInsertionRef.current = ''; // 清理 useRef
|
||||
contentAfterAiInsertionRef.current = '';
|
||||
aiInsertionStartPosRef.current = null;
|
||||
message.info('已中断上一次AI回答,正在处理新问题...');
|
||||
// 稍作延迟,确保状态更新后再处理新问题,防止竞态条件
|
||||
await new Promise((resolve) => {
|
||||
setTimeout(resolve, 100);
|
||||
});
|
||||
}
|
||||
|
||||
// 如果当前光标位置无效,提醒用户设置
|
||||
if (cursorPosition === null) {
|
||||
message.warning('请先点击文本框以设置AI内容插入位置。');
|
||||
return;
|
||||
}
|
||||
|
||||
// 捕获 AI 插入点前后的静态内容,存储到 useRef
|
||||
const currentCursorPos = cursorPosition;
|
||||
// 此时的 content 应该是用户当前编辑器的实际内容,包括可能存在的INSERTION_MARKER
|
||||
// 但由于 INSERTION_MARKER 为空,所以就是当前的主 content
|
||||
contentBeforeAiInsertionRef.current = content.substring(
|
||||
0,
|
||||
currentCursorPos,
|
||||
);
|
||||
contentAfterAiInsertionRef.current = content.substring(currentCursorPos);
|
||||
aiInsertionStartPosRef.current = currentCursorPos; // 记录确切的开始插入位置
|
||||
|
||||
setIsAiLoading(true);
|
||||
setIsStreaming(true); // 标记AI开始流式输出
|
||||
setCurrentStreamedAiOutput(''); // 清空历史累积内容,为新的流做准备
|
||||
|
||||
try {
|
||||
const authorization = localStorage.getItem('Authorization');
|
||||
if (!authorization) {
|
||||
message.error(t('loginRequiredError'));
|
||||
setIsAiLoading(false);
|
||||
setIsStreaming(false); // 停止流式标记
|
||||
// 失败时也清理临时状态
|
||||
setCurrentStreamedAiOutput('');
|
||||
contentBeforeAiInsertionRef.current = '';
|
||||
contentAfterAiInsertionRef.current = '';
|
||||
aiInsertionStartPosRef.current = null;
|
||||
return;
|
||||
}
|
||||
|
||||
// 构建请求内容,将上下文内容发送给AI
|
||||
let questionWithContext = aiQuestion;
|
||||
|
||||
// 只有当用户设置了插入位置时才包含上下文
|
||||
if (aiInsertionStartPosRef.current !== null) {
|
||||
// 传递给 getContextContent 的 content 应该是当前编辑器完整的,包含marker的
|
||||
const { contextContent } = getContextContent(
|
||||
aiInsertionStartPosRef.current,
|
||||
content,
|
||||
);
|
||||
questionWithContext = `${aiQuestion}\n\n上下文内容:\n${contextContent}`;
|
||||
}
|
||||
|
||||
// 发送流式请求
|
||||
await sendMessage({
|
||||
question: questionWithContext,
|
||||
kb_ids: selectedKnowledgeBases,
|
||||
dialog_id: dialogId,
|
||||
similarity_threshold: similarityThreshold,
|
||||
keyword_similarity_weight: keywordSimilarityWeight,
|
||||
temperature: modelTemperature,
|
||||
});
|
||||
|
||||
setAiQuestion(''); // 清空输入框
|
||||
// 重新聚焦文本框,但不是AI问答框,而是主编辑区
|
||||
if (textAreaRef.current?.resizableTextArea?.textArea) {
|
||||
textAreaRef.current.resizableTextArea.textArea.focus();
|
||||
}
|
||||
} catch (error: any) {
|
||||
console.error('AI助手处理失败:', error);
|
||||
if (error.code === 'ECONNABORTED' || error.name === 'AbortError') {
|
||||
|
@ -319,10 +552,8 @@ const Write = () => {
|
|||
message.error(t('aiRequestFailedError'));
|
||||
}
|
||||
} finally {
|
||||
clearTimeout(timeoutId);
|
||||
setIsAiLoading(false);
|
||||
setAiQuestion('');
|
||||
if (textAreaRef.current) textAreaRef.current.focus();
|
||||
// AI加载状态在 done 状态或错误处理中会更新,这里不主动设置为 false
|
||||
// 只有当 isStreaming 状态完全结束时,才彻底清除临时状态
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -525,33 +756,125 @@ const Write = () => {
|
|||
}
|
||||
};
|
||||
|
||||
const renderEditor = () => (
|
||||
<Input.TextArea
|
||||
ref={textAreaRef}
|
||||
style={{
|
||||
height: '100%',
|
||||
width: '100%',
|
||||
border: 'none',
|
||||
padding: 24,
|
||||
fontSize: 16,
|
||||
resize: 'none',
|
||||
}}
|
||||
value={content}
|
||||
onChange={(e) => setContent(e.target.value)}
|
||||
onClick={(e) => {
|
||||
const target = e.target as HTMLTextAreaElement;
|
||||
setCursorPosition(target.selectionStart);
|
||||
setShowCursorIndicator(true);
|
||||
}}
|
||||
onKeyUp={(e) => {
|
||||
const target = e.target as HTMLTextAreaElement;
|
||||
setCursorPosition(target.selectionStart);
|
||||
setShowCursorIndicator(true);
|
||||
}}
|
||||
placeholder={t('writePlaceholder')}
|
||||
autoSize={false}
|
||||
/>
|
||||
);
|
||||
// 修改编辑器渲染函数,添加光标标记
|
||||
const renderEditor = () => {
|
||||
let displayContent = content; // 默认显示主内容状态
|
||||
|
||||
// 如果 AI 正在流式输出,则动态拼接显示内容
|
||||
if (isStreaming && aiInsertionStartPosRef.current !== null) {
|
||||
// 实时显示时,保留 <think> 标签内容
|
||||
displayContent =
|
||||
contentBeforeAiInsertionRef.current +
|
||||
currentStreamedAiOutput +
|
||||
contentAfterAiInsertionRef.current;
|
||||
} else if (showCursorIndicator && cursorPosition !== null) {
|
||||
// 如果不处于流式输出中,但设置了光标,则显示插入标记
|
||||
// (由于 INSERTION_MARKER 为空字符串,这一步实际上不会添加可见标记)
|
||||
const beforeCursor = content.substring(0, cursorPosition);
|
||||
const afterCursor = content.substring(cursorPosition);
|
||||
displayContent = beforeCursor + INSERTION_MARKER + afterCursor;
|
||||
}
|
||||
|
||||
return (
|
||||
<div style={{ position: 'relative', height: '100%', width: '100%' }}>
|
||||
<Input.TextArea
|
||||
ref={textAreaRef}
|
||||
style={{
|
||||
height: '100%',
|
||||
width: '100%',
|
||||
border: 'none',
|
||||
padding: 24,
|
||||
fontSize: 16,
|
||||
resize: 'none',
|
||||
}}
|
||||
value={displayContent} // 使用动态的 displayContent
|
||||
onChange={(e) => {
|
||||
const currentInputValue = e.target.value; // 获取当前输入框中的完整内容
|
||||
const newCursorSelectionStart = e.target.selectionStart;
|
||||
let finalContent = currentInputValue;
|
||||
let finalCursorPosition = newCursorSelectionStart;
|
||||
|
||||
// 如果用户在 AI 流式输出时输入,则中断 AI 输出,并“固化”当前内容(清除 <think> 标签)
|
||||
if (isStreaming) {
|
||||
stopOutputMessage(); // 中断 SSE 连接
|
||||
setIsStreaming(false); // 停止流式输出
|
||||
setIsAiLoading(false); // 停止加载状态
|
||||
|
||||
// 此时 currentInputValue 已经包含了所有已流出的 AI 内容 (包括 <think> 标签)
|
||||
// 移除 <think> 标签
|
||||
const contentWithoutThinkTags = currentInputValue.replace(
|
||||
/<think>.*?<\/think>/gs,
|
||||
'',
|
||||
);
|
||||
finalContent = contentWithoutThinkTags;
|
||||
|
||||
// 重新计算光标位置,因为内容长度可能因移除 <think> 标签而改变
|
||||
const originalLength = currentInputValue.length;
|
||||
const cleanedLength = finalContent.length;
|
||||
|
||||
// 假设光标是在 AI 插入点之后,或者在用户输入后新位置,需要调整
|
||||
// 如果光标在被移除的 <think> 区域内部,或者在移除区域之后,需要回退相应长度
|
||||
if (
|
||||
newCursorSelectionStart > (aiInsertionStartPosRef.current || 0)
|
||||
) {
|
||||
// 假设 aiInsertionStartPosRef.current 是 AI 内容的起始点
|
||||
finalCursorPosition =
|
||||
newCursorSelectionStart - (originalLength - cleanedLength);
|
||||
// 确保光标不会超出新内容的末尾
|
||||
if (finalCursorPosition > cleanedLength) {
|
||||
finalCursorPosition = cleanedLength;
|
||||
}
|
||||
} else {
|
||||
finalCursorPosition = newCursorSelectionStart; // 光标在 AI 插入点之前,无需调整
|
||||
}
|
||||
|
||||
// 清理流式相关的临时状态和 useRef
|
||||
setCurrentStreamedAiOutput('');
|
||||
contentBeforeAiInsertionRef.current = '';
|
||||
contentAfterAiInsertionRef.current = '';
|
||||
aiInsertionStartPosRef.current = null;
|
||||
}
|
||||
|
||||
// 检查内容中是否包含 INSERTION_MARKER,如果包含则移除
|
||||
// 由于 INSERTION_MARKER 为空字符串,此逻辑块影响很小
|
||||
const markerIndex = finalContent.indexOf(INSERTION_MARKER); // 对已处理的 finalContent 进行检查
|
||||
if (markerIndex !== -1) {
|
||||
const contentWithoutMarker = finalContent.replace(
|
||||
INSERTION_MARKER,
|
||||
'',
|
||||
);
|
||||
finalContent = contentWithoutMarker;
|
||||
if (newCursorSelectionStart > markerIndex) {
|
||||
// 此处的 newCursorSelectionStart 仍然是原始的,需要与 markerIndex 比较
|
||||
finalCursorPosition =
|
||||
finalCursorPosition - INSERTION_MARKER.length;
|
||||
}
|
||||
}
|
||||
|
||||
setContent(finalContent); // 更新主内容状态
|
||||
setCursorPosition(finalCursorPosition); // 更新光标位置状态
|
||||
// 手动设置光标位置
|
||||
// 这里不能直接操作 DOM,因为是在 setState 之后,DOM 尚未更新
|
||||
// Ant Design Input.TextArea 会在 value 更新后自动处理光标位置
|
||||
setShowCursorIndicator(true); // 用户输入时,表明已设置光标位置,持续显示标记
|
||||
}}
|
||||
onClick={(e) => {
|
||||
const target = e.target as HTMLTextAreaElement;
|
||||
setCursorPosition(target.selectionStart);
|
||||
setShowCursorIndicator(true); // 点击时设置光标位置并显示标记
|
||||
target.focus(); // 确保点击后立即聚焦
|
||||
}}
|
||||
onKeyUp={(e) => {
|
||||
const target = e.target as HTMLTextAreaElement;
|
||||
setCursorPosition(target.selectionStart);
|
||||
setShowCursorIndicator(true); // 键盘抬起时设置光标位置并显示标记
|
||||
}}
|
||||
placeholder={t('writePlaceholder')}
|
||||
autoSize={false}
|
||||
/>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
const renderPreview = () => (
|
||||
<div
|
||||
style={{
|
||||
|
@ -563,6 +886,7 @@ const Write = () => {
|
|||
}}
|
||||
>
|
||||
<HightLightMarkdown>
|
||||
{/* 预览模式下,通常不显示 <think> 标签,所以这里不需要特殊处理 */}
|
||||
{content || t('previewPlaceholder')}
|
||||
</HightLightMarkdown>
|
||||
</div>
|
||||
|
@ -874,11 +1198,6 @@ const Write = () => {
|
|||
}}
|
||||
style={{ flexShrink: 0 }}
|
||||
>
|
||||
{isAiLoading && (
|
||||
<div style={{ textAlign: 'center', marginBottom: 8 }}>
|
||||
{t('aiLoadingMessage')}...
|
||||
</div>
|
||||
)}
|
||||
<Input.TextArea
|
||||
placeholder={t('askAI')}
|
||||
autoSize={{ minRows: 2, maxRows: 5 }}
|
||||
|
@ -887,6 +1206,50 @@ const Write = () => {
|
|||
onKeyDown={handleAiQuestionSubmit}
|
||||
disabled={isAiLoading}
|
||||
/>
|
||||
|
||||
{/* 插入位置提示 或 AI正在回答时的提示 - 现已常驻显示 */}
|
||||
{isStreaming ? ( // AI正在回答时优先显示此提示
|
||||
<div
|
||||
style={{
|
||||
fontSize: '12px',
|
||||
color: '#faad14', // 警告色
|
||||
padding: '6px 10px',
|
||||
backgroundColor: '#fffbe6',
|
||||
borderRadius: '4px',
|
||||
border: '1px solid #ffe58f',
|
||||
}}
|
||||
>
|
||||
✨ AI正在生成回答,请稍候...
|
||||
</div>
|
||||
) : // AI未回答时
|
||||
cursorPosition !== null ? ( // 如果光标已设置
|
||||
<div
|
||||
style={{
|
||||
fontSize: '12px',
|
||||
color: '#666',
|
||||
padding: '6px 10px',
|
||||
backgroundColor: '#e6f7ff',
|
||||
borderRadius: '4px',
|
||||
border: '1px solid #91d5ff',
|
||||
}}
|
||||
>
|
||||
💡 AI回答将插入到文档光标位置 (第 {cursorPosition} 个字符)。
|
||||
</div>
|
||||
) : (
|
||||
// 如果光标未设置
|
||||
<div
|
||||
style={{
|
||||
fontSize: '12px',
|
||||
color: '#f5222d', // 错误色,提醒用户
|
||||
padding: '6px 10px',
|
||||
backgroundColor: '#fff1f0',
|
||||
borderRadius: '4px',
|
||||
border: '1px solid #ffccc7',
|
||||
}}
|
||||
>
|
||||
👆 请在上方文档中点击,设置AI内容插入位置。
|
||||
</div>
|
||||
)}
|
||||
</Card>
|
||||
</Flex>
|
||||
</Content>
|
||||
|
|
Loading…
Reference in New Issue