chores: 删除后端agent相关内容

- 删除了 agent 目录下的所有文档文件(README.md 和 README_zh.md)
- 删除了 agent 目录下的所有 Python 文件(__init__.py, canvas.py, component 目录下的所有文件)
- 此次删除操作清除了 agent 模块的全部内容,包括代码实现和相关说明文档
This commit is contained in:
zstar 2025-06-06 22:34:14 +08:00
parent 59b79cc903
commit aee7779237
83 changed files with 254 additions and 18939 deletions

View File

@ -8,7 +8,6 @@ WORKDIR /ragflow
COPY api ./api
COPY conf ./conf
COPY rag ./rag
COPY agent ./agent
COPY graphrag ./graphrag
COPY agentic_reasoning ./agentic_reasoning

View File

@ -1,45 +0,0 @@
English | [简体中文](./README_zh.md)
# *Graph*
## Introduction
*Graph* is a mathematical concept which is composed of nodes and edges.
It is used to compose a complex work flow or agent.
And this graph is beyond the DAG that we can use circles to describe our agent or work flow.
Under this folder, we propose a test tool ./test/client.py which can test the DSLs such as json files in folder ./test/dsl_examples.
Please use this client at the same folder you start RAGFlow. If it's run by Docker, please go into the container before running the client.
Otherwise, correct configurations in service_conf.yaml is essential.
```bash
PYTHONPATH=path/to/ragflow python graph/test/client.py -h
usage: client.py [-h] -s DSL -t TENANT_ID -m
options:
-h, --help show this help message and exit
-s DSL, --dsl DSL input dsl
-t TENANT_ID, --tenant_id TENANT_ID
Tenant ID
-m, --stream Stream output
```
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/79179c5e-d4d6-464a-b6c4-5721cb329899" width="1000"/>
</div>
## How to gain a TENANT_ID in command line?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/419d8588-87b1-4ab8-ac49-2d1f047a4b97" width="600"/>
</div>
💡 We plan to display it here in the near future.
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/c97915de-0091-46a5-afd9-e278946e5fe3" width="600"/>
</div>
## How to set 'kb_ids' for component 'Retrieval' in DSL?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/0a731534-cac8-49fd-8a92-ca247eeef66d" width="600"/>
</div>

View File

@ -1,46 +0,0 @@
[English](./README.md) | 简体中文
# *Graph*
## 简介
"Graph"是一个由节点和边组成的数学概念。
它被用来构建复杂的工作流或代理。
这个图超越了有向无环图DAG我们可以使用循环来描述我们的代理或工作流。
在这个文件夹下,我们提出了一个测试工具 ./test/client.py
它可以测试像文件夹./test/dsl_examples下一样的DSL文件。
请在启动 RAGFlow 的同一文件夹中使用此客户端。如果它是通过 Docker 运行的,请在运行客户端之前进入容器。
否则,正确配置 service_conf.yaml 文件是必不可少的。
```bash
PYTHONPATH=path/to/ragflow python graph/test/client.py -h
usage: client.py [-h] -s DSL -t TENANT_ID -m
options:
-h, --help show this help message and exit
-s DSL, --dsl DSL input dsl
-t TENANT_ID, --tenant_id TENANT_ID
Tenant ID
-m, --stream Stream output
```
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/05924730-c427-495b-8ee4-90b8b2250681" width="1000"/>
</div>
## 命令行中的TENANT_ID如何获得?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/419d8588-87b1-4ab8-ac49-2d1f047a4b97" width="600"/>
</div>
💡 后面会展示在这里:
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/c97915de-0091-46a5-afd9-e278946e5fe3" width="600"/>
</div>
## DSL里面的Retrieval组件的kb_ids怎么填?
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/0a731534-cac8-49fd-8a92-ca247eeef66d" width="600"/>
</div>

View File

@ -1,18 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from beartype.claw import beartype_this_package
beartype_this_package()

View File

@ -1,365 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import json
from copy import deepcopy
from functools import partial
import pandas as pd
from agent.component import component_class
from agent.component.base import ComponentBase
class Canvas:
"""
dsl = {
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {},
},
"downstream": ["answer_0"],
"upstream": [],
},
"answer_0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval_0"],
"upstream": ["begin", "generate_0"],
},
"retrieval_0": {
"obj": {
"component_name": "Retrieval",
"params": {}
},
"downstream": ["generate_0"],
"upstream": ["answer_0"],
},
"generate_0": {
"obj": {
"component_name": "Generate",
"params": {}
},
"downstream": ["answer_0"],
"upstream": ["retrieval_0"],
}
},
"history": [],
"messages": [],
"reference": [],
"path": [["begin"]],
"answer": []
}
"""
def __init__(self, dsl: str, tenant_id=None):
self.path = []
self.history = []
self.messages = []
self.answer = []
self.components = {}
self.dsl = json.loads(dsl) if dsl else {
"components": {
"begin": {
"obj": {
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": [],
"upstream": [],
"parent_id": ""
}
},
"history": [],
"messages": [],
"reference": [],
"path": [],
"answer": []
}
self._tenant_id = tenant_id
self._embed_id = ""
self.load()
def load(self):
self.components = self.dsl["components"]
cpn_nms = set([])
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
assert "Answer" in cpn_nms, "There have to be an 'Answer' component."
for k, cpn in self.components.items():
cpn_nms.add(cpn["obj"]["component_name"])
param = component_class(cpn["obj"]["component_name"] + "Param")()
param.update(cpn["obj"]["params"])
param.check()
cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
if cpn["obj"].component_name == "Categorize":
for _, desc in param.category_description.items():
if desc["to"] not in cpn["downstream"]:
cpn["downstream"].append(desc["to"])
self.path = self.dsl["path"]
self.history = self.dsl["history"]
self.messages = self.dsl["messages"]
self.answer = self.dsl["answer"]
self.reference = self.dsl["reference"]
self._embed_id = self.dsl.get("embed_id", "")
def __str__(self):
self.dsl["path"] = self.path
self.dsl["history"] = self.history
self.dsl["messages"] = self.messages
self.dsl["answer"] = self.answer
self.dsl["reference"] = self.reference
self.dsl["embed_id"] = self._embed_id
dsl = {
"components": {}
}
for k in self.dsl.keys():
if k in ["components"]:
continue
dsl[k] = deepcopy(self.dsl[k])
for k, cpn in self.components.items():
if k not in dsl["components"]:
dsl["components"][k] = {}
for c in cpn.keys():
if c == "obj":
dsl["components"][k][c] = json.loads(str(cpn["obj"]))
continue
dsl["components"][k][c] = deepcopy(cpn[c])
return json.dumps(dsl, ensure_ascii=False)
def reset(self):
self.path = []
self.history = []
self.messages = []
self.answer = []
self.reference = []
for k, cpn in self.components.items():
self.components[k]["obj"].reset()
self._embed_id = ""
def get_component_name(self, cid):
for n in self.dsl["graph"]["nodes"]:
if cid == n["id"]:
return n["data"]["name"]
return ""
def run(self, **kwargs):
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
try:
ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
except Exception as e:
ans = ComponentBase.be_output(str(e))
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
for an in ans():
yield an
else:
yield ans
return
if not self.path:
self.components["begin"]["obj"].run(self.history, **kwargs)
self.path.append(["begin"])
self.path.append([])
ran = -1
waiting = []
without_dependent_checking = []
def prepare2run(cpns):
nonlocal ran, ans
for c in cpns:
if self.path[-1] and c == self.path[-1][-1]:
continue
cpn = self.components[c]["obj"]
if cpn.component_name == "Answer":
self.answer.append(c)
else:
logging.debug(f"Canvas.prepare2run: {c}")
if c not in without_dependent_checking:
cpids = cpn.get_dependent_components()
if any([cc not in self.path[-1] for cc in cpids]):
if c not in waiting:
waiting.append(c)
continue
yield "*'{}'* is running...🕞".format(self.get_component_name(c))
if cpn.component_name.lower() == "iteration":
st_cpn = cpn.get_start()
assert st_cpn, "Start component not found for Iteration."
if not st_cpn["obj"].end():
cpn = st_cpn["obj"]
c = cpn._id
try:
ans = cpn.run(self.history, **kwargs)
except Exception as e:
logging.exception(f"Canvas.run got exception: {e}")
self.path[-1].append(c)
ran += 1
raise e
self.path[-1].append(c)
ran += 1
downstream = self.components[self.path[-2][-1]]["downstream"]
if not downstream and self.components[self.path[-2][-1]].get("parent_id"):
cid = self.path[-2][-1]
pid = self.components[cid]["parent_id"]
o, _ = self.components[cid]["obj"].output(allow_partial=False)
oo, _ = self.components[pid]["obj"].output(allow_partial=False)
self.components[pid]["obj"].set(pd.concat([oo, o], ignore_index=True))
downstream = [pid]
for m in prepare2run(downstream):
yield {"content": m, "running_status": True}
while 0 <= ran < len(self.path[-1]):
logging.debug(f"Canvas.run: {ran} {self.path}")
cpn_id = self.path[-1][ran]
cpn = self.get_component(cpn_id)
if not any([cpn["downstream"], cpn.get("parent_id"), waiting]):
break
loop = self._find_loop()
if loop:
raise OverflowError(f"Too much loops: {loop}")
if cpn["obj"].component_name.lower() in ["switch", "categorize", "relevant"]:
switch_out = cpn["obj"].output()[1].iloc[0, 0]
assert switch_out in self.components, \
"{}'s output: {} not valid.".format(cpn_id, switch_out)
for m in prepare2run([switch_out]):
yield {"content": m, "running_status": True}
continue
downstream = cpn["downstream"]
if not downstream and cpn.get("parent_id"):
pid = cpn["parent_id"]
_, o = cpn["obj"].output(allow_partial=False)
_, oo = self.components[pid]["obj"].output(allow_partial=False)
self.components[pid]["obj"].set_output(pd.concat([oo.dropna(axis=1), o.dropna(axis=1)], ignore_index=True))
downstream = [pid]
for m in prepare2run(downstream):
yield {"content": m, "running_status": True}
if ran >= len(self.path[-1]) and waiting:
without_dependent_checking = waiting
waiting = []
for m in prepare2run(without_dependent_checking):
yield {"content": m, "running_status": True}
without_dependent_checking = []
ran -= 1
if self.answer:
cpn_id = self.answer[0]
self.answer.pop(0)
ans = self.components[cpn_id]["obj"].run(self.history, **kwargs)
self.path[-1].append(cpn_id)
if kwargs.get("stream"):
assert isinstance(ans, partial)
for an in ans():
yield an
else:
yield ans
else:
raise Exception("The dialog flow has no way to interact with you. Please add an 'Interact' component to the end of the flow.")
def get_component(self, cpn_id):
return self.components[cpn_id]
def get_tenant_id(self):
return self._tenant_id
def get_history(self, window_size):
convs = []
for role, obj in self.history[window_size * -1:]:
if isinstance(obj, list) and obj and all([isinstance(o, dict) for o in obj]):
convs.append({"role": role, "content": '\n'.join([str(s.get("content", "")) for s in obj])})
else:
convs.append({"role": role, "content": str(obj)})
return convs
def add_user_input(self, question):
self.history.append(("user", question))
def set_embedding_model(self, embed_id):
self._embed_id = embed_id
def get_embedding_model(self):
return self._embed_id
def _find_loop(self, max_loops=6):
path = self.path[-1][::-1]
if len(path) < 2:
return False
for i in range(len(path)):
if path[i].lower().find("answer") == 0 or path[i].lower().find("iterationitem") == 0:
path = path[:i]
break
if len(path) < 2:
return False
for loc in range(2, len(path) // 2):
pat = ",".join(path[0:loc])
path_str = ",".join(path)
if len(pat) >= len(path_str):
return False
loop = max_loops
while path_str.find(pat) == 0 and loop >= 0:
loop -= 1
if len(pat)+1 >= len(path_str):
return False
path_str = path_str[len(pat)+1:]
if loop < 0:
pat = " => ".join([p.split(":")[0] for p in path[0:loc]])
return pat + " => " + pat
return False
def get_prologue(self):
return self.components["begin"]["obj"]._param.prologue
def set_global_param(self, **kwargs):
for k, v in kwargs.items():
for q in self.components["begin"]["obj"]._param.query:
if k != q["key"]:
continue
q["value"] = v
def get_preset_param(self):
return self.components["begin"]["obj"]._param.query
def get_component_input_elements(self, cpnnm):
return self.components[cpnnm]["obj"].get_input_elements()

View File

@ -1,133 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import importlib
from .begin import Begin, BeginParam
from .generate import Generate, GenerateParam
from .retrieval import Retrieval, RetrievalParam
from .answer import Answer, AnswerParam
from .categorize import Categorize, CategorizeParam
from .switch import Switch, SwitchParam
from .relevant import Relevant, RelevantParam
from .message import Message, MessageParam
from .rewrite import RewriteQuestion, RewriteQuestionParam
from .keyword import KeywordExtract, KeywordExtractParam
from .concentrator import Concentrator, ConcentratorParam
from .baidu import Baidu, BaiduParam
from .duckduckgo import DuckDuckGo, DuckDuckGoParam
from .wikipedia import Wikipedia, WikipediaParam
from .pubmed import PubMed, PubMedParam
from .arxiv import ArXiv, ArXivParam
from .google import Google, GoogleParam
from .bing import Bing, BingParam
from .googlescholar import GoogleScholar, GoogleScholarParam
from .deepl import DeepL, DeepLParam
from .github import GitHub, GitHubParam
from .baidufanyi import BaiduFanyi, BaiduFanyiParam
from .qweather import QWeather, QWeatherParam
from .exesql import ExeSQL, ExeSQLParam
from .yahoofinance import YahooFinance, YahooFinanceParam
from .wencai import WenCai, WenCaiParam
from .jin10 import Jin10, Jin10Param
from .tushare import TuShare, TuShareParam
from .akshare import AkShare, AkShareParam
from .crawler import Crawler, CrawlerParam
from .invoke import Invoke, InvokeParam
from .template import Template, TemplateParam
from .email import Email, EmailParam
from .iteration import Iteration, IterationParam
from .iterationitem import IterationItem, IterationItemParam
def component_class(class_name):
m = importlib.import_module("agent.component")
c = getattr(m, class_name)
return c
__all__ = [
"Begin",
"BeginParam",
"Generate",
"GenerateParam",
"Retrieval",
"RetrievalParam",
"Answer",
"AnswerParam",
"Categorize",
"CategorizeParam",
"Switch",
"SwitchParam",
"Relevant",
"RelevantParam",
"Message",
"MessageParam",
"RewriteQuestion",
"RewriteQuestionParam",
"KeywordExtract",
"KeywordExtractParam",
"Concentrator",
"ConcentratorParam",
"Baidu",
"BaiduParam",
"DuckDuckGo",
"DuckDuckGoParam",
"Wikipedia",
"WikipediaParam",
"PubMed",
"PubMedParam",
"ArXiv",
"ArXivParam",
"Google",
"GoogleParam",
"Bing",
"BingParam",
"GoogleScholar",
"GoogleScholarParam",
"DeepL",
"DeepLParam",
"GitHub",
"GitHubParam",
"BaiduFanyi",
"BaiduFanyiParam",
"QWeather",
"QWeatherParam",
"ExeSQL",
"ExeSQLParam",
"YahooFinance",
"YahooFinanceParam",
"WenCai",
"WenCaiParam",
"Jin10",
"Jin10Param",
"TuShare",
"TuShareParam",
"AkShare",
"AkShareParam",
"Crawler",
"CrawlerParam",
"Invoke",
"InvokeParam",
"Iteration",
"IterationParam",
"IterationItem",
"IterationItemParam",
"Template",
"TemplateParam",
"Email",
"EmailParam",
"component_class"
]

View File

@ -1,56 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class AkShareParam(ComponentParamBase):
"""
Define the AkShare component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class AkShare(ComponentBase, ABC):
component_name = "AkShare"
def _run(self, history, **kwargs):
import akshare as ak
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return AkShare.be_output("")
try:
ak_res = []
stock_news_em_df = ak.stock_news_em(symbol=ans)
stock_news_em_df = stock_news_em_df.head(self._param.top_n)
ak_res = [{"content": '<a href="' + i["新闻链接"] + '">' + i["新闻标题"] + '</a>\n 新闻内容: ' + i[
"新闻内容"] + " \n发布时间:" + i["发布时间"] + " \n文章来源: " + i["文章来源"]} for index, i in stock_news_em_df.iterrows()]
except Exception as e:
return AkShare.be_output("**ERROR**: " + str(e))
if not ak_res:
return AkShare.be_output("")
return pd.DataFrame(ak_res)

View File

@ -1,89 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
from typing import Tuple, Union
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class AnswerParam(ComponentParamBase):
"""
Define the Answer component parameters.
"""
def __init__(self):
super().__init__()
self.post_answers = []
def check(self):
return True
class Answer(ComponentBase, ABC):
component_name = "Answer"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
ans = self.get_input()
if self._param.post_answers:
ans = pd.concat([ans, pd.DataFrame([{"content": random.choice(self._param.post_answers)}])], ignore_index=False)
return ans
def stream_output(self):
res = None
if hasattr(self, "exception") and self.exception:
res = {"content": str(self.exception)}
self.exception = None
yield res
self.set_output(res)
return
stream = self.get_stream_input()
if isinstance(stream, pd.DataFrame):
res = stream
answer = ""
for ii, row in stream.iterrows():
answer += row.to_dict()["content"]
yield {"content": answer}
else:
for st in stream():
res = st
yield st
if self._param.post_answers:
res["content"] += random.choice(self._param.post_answers)
yield res
self.set_output(res)
def set_exception(self, e):
self.exception = e
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
if allow_partial:
return super.output()
for r, c in self._canvas.history[::-1]:
if r == "user":
return self._param.output_var_name, pd.DataFrame([{"content": c}])
self._param.output_var_name, pd.DataFrame([])

View File

@ -1,68 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import arxiv
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class ArXivParam(ComponentParamBase):
"""
Define the ArXiv component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 6
self.sort_by = 'submittedDate'
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.sort_by, "ArXiv Search Sort_by",
['submittedDate', 'lastUpdatedDate', 'relevance'])
class ArXiv(ComponentBase, ABC):
component_name = "ArXiv"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return ArXiv.be_output("")
try:
sort_choices = {"relevance": arxiv.SortCriterion.Relevance,
"lastUpdatedDate": arxiv.SortCriterion.LastUpdatedDate,
'submittedDate': arxiv.SortCriterion.SubmittedDate}
arxiv_client = arxiv.Client()
search = arxiv.Search(
query=ans,
max_results=self._param.top_n,
sort_by=sort_choices[self._param.sort_by]
)
arxiv_res = [
{"content": 'Title: ' + i.title + '\nPdf_Url: <a href="' + i.pdf_url + '"></a> \nSummary: ' + i.summary} for
i in list(arxiv_client.results(search))]
except Exception as e:
return ArXiv.be_output("**ERROR**: " + str(e))
if not arxiv_res:
return ArXiv.be_output("")
df = pd.DataFrame(arxiv_res)
logging.debug(f"df: {str(df)}")
return df

View File

@ -1,67 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
import requests
import re
from agent.component.base import ComponentBase, ComponentParamBase
class BaiduParam(ComponentParamBase):
"""
Define the Baidu component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class Baidu(ComponentBase, ABC):
component_name = "Baidu"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Baidu.be_output("")
try:
url = 'http://www.baidu.com/s?wd=' + ans + '&rn=' + str(self._param.top_n)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.104 Safari/537.36'}
response = requests.get(url=url, headers=headers)
url_res = re.findall(r"'url': \\\"(.*?)\\\"}", response.text)
title_res = re.findall(r"'title': \\\"(.*?)\\\",\\n", response.text)
body_res = re.findall(r"\"contentText\":\"(.*?)\"", response.text)
baidu_res = [{"content": re.sub('<em>|</em>', '', '<a href="' + url + '">' + title + '</a> ' + body)} for
url, title, body in zip(url_res, title_res, body_res)]
del body_res, url_res, title_res
except Exception as e:
return Baidu.be_output("**ERROR**: " + str(e))
if not baidu_res:
return Baidu.be_output("")
df = pd.DataFrame(baidu_res)
logging.debug(f"df: {str(df)}")
return df

View File

@ -1,96 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
import requests
from agent.component.base import ComponentBase, ComponentParamBase
from hashlib import md5
class BaiduFanyiParam(ComponentParamBase):
"""
Define the BaiduFanyi component parameters.
"""
def __init__(self):
super().__init__()
self.appid = "xxx"
self.secret_key = "xxx"
self.trans_type = 'translate'
self.parameters = []
self.source_lang = 'auto'
self.target_lang = 'auto'
self.domain = 'finance'
def check(self):
self.check_empty(self.appid, "BaiduFanyi APPID")
self.check_empty(self.secret_key, "BaiduFanyi Secret Key")
self.check_valid_value(self.trans_type, "Translate type", ['translate', 'fieldtranslate'])
self.check_valid_value(self.source_lang, "Source language",
['auto', 'zh', 'en', 'yue', 'wyw', 'jp', 'kor', 'fra', 'spa', 'th', 'ara', 'ru', 'pt',
'de', 'it', 'el', 'nl', 'pl', 'bul', 'est', 'dan', 'fin', 'cs', 'rom', 'slo', 'swe',
'hu', 'cht', 'vie'])
self.check_valid_value(self.target_lang, "Target language",
['auto', 'zh', 'en', 'yue', 'wyw', 'jp', 'kor', 'fra', 'spa', 'th', 'ara', 'ru', 'pt',
'de', 'it', 'el', 'nl', 'pl', 'bul', 'est', 'dan', 'fin', 'cs', 'rom', 'slo', 'swe',
'hu', 'cht', 'vie'])
self.check_valid_value(self.domain, "Translate field",
['it', 'finance', 'machinery', 'senimed', 'novel', 'academic', 'aerospace', 'wiki',
'news', 'law', 'contract'])
class BaiduFanyi(ComponentBase, ABC):
component_name = "BaiduFanyi"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return BaiduFanyi.be_output("")
try:
source_lang = self._param.source_lang
target_lang = self._param.target_lang
appid = self._param.appid
salt = random.randint(32768, 65536)
secret_key = self._param.secret_key
if self._param.trans_type == 'translate':
sign = md5((appid + ans + salt + secret_key).encode('utf-8')).hexdigest()
url = 'http://api.fanyi.baidu.com/api/trans/vip/translate?' + 'q=' + ans + '&from=' + source_lang + '&to=' + target_lang + '&appid=' + appid + '&salt=' + salt + '&sign=' + sign
headers = {"Content-Type": "application/x-www-form-urlencoded"}
response = requests.post(url=url, headers=headers).json()
if response.get('error_code'):
BaiduFanyi.be_output("**Error**:" + response['error_msg'])
return BaiduFanyi.be_output(response['trans_result'][0]['dst'])
elif self._param.trans_type == 'fieldtranslate':
domain = self._param.domain
sign = md5((appid + ans + salt + domain + secret_key).encode('utf-8')).hexdigest()
url = 'http://api.fanyi.baidu.com/api/trans/vip/fieldtranslate?' + 'q=' + ans + '&from=' + source_lang + '&to=' + target_lang + '&appid=' + appid + '&salt=' + salt + '&domain=' + domain + '&sign=' + sign
headers = {"Content-Type": "application/x-www-form-urlencoded"}
response = requests.post(url=url, headers=headers).json()
if response.get('error_code'):
BaiduFanyi.be_output("**Error**:" + response['error_msg'])
return BaiduFanyi.be_output(response['trans_result'][0]['dst'])
except Exception as e:
BaiduFanyi.be_output("**Error**:" + str(e))

View File

@ -1,586 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import builtins
import json
import os
import logging
from functools import partial
from typing import Tuple, Union
import pandas as pd
from agent import settings
_FEEDED_DEPRECATED_PARAMS = "_feeded_deprecated_params"
_DEPRECATED_PARAMS = "_deprecated_params"
_USER_FEEDED_PARAMS = "_user_feeded_params"
_IS_RAW_CONF = "_is_raw_conf"
class ComponentParamBase(ABC):
def __init__(self):
self.output_var_name = "output"
self.message_history_window_size = 22
self.query = []
self.inputs = []
self.debug_inputs = []
def set_name(self, name: str):
self._name = name
return self
def check(self):
raise NotImplementedError("Parameter Object should be checked.")
@classmethod
def _get_or_init_deprecated_params_set(cls):
if not hasattr(cls, _DEPRECATED_PARAMS):
setattr(cls, _DEPRECATED_PARAMS, set())
return getattr(cls, _DEPRECATED_PARAMS)
def _get_or_init_feeded_deprecated_params_set(self, conf=None):
if not hasattr(self, _FEEDED_DEPRECATED_PARAMS):
if conf is None:
setattr(self, _FEEDED_DEPRECATED_PARAMS, set())
else:
setattr(
self,
_FEEDED_DEPRECATED_PARAMS,
set(conf[_FEEDED_DEPRECATED_PARAMS]),
)
return getattr(self, _FEEDED_DEPRECATED_PARAMS)
def _get_or_init_user_feeded_params_set(self, conf=None):
if not hasattr(self, _USER_FEEDED_PARAMS):
if conf is None:
setattr(self, _USER_FEEDED_PARAMS, set())
else:
setattr(self, _USER_FEEDED_PARAMS, set(conf[_USER_FEEDED_PARAMS]))
return getattr(self, _USER_FEEDED_PARAMS)
def get_user_feeded(self):
return self._get_or_init_user_feeded_params_set()
def get_feeded_deprecated_params(self):
return self._get_or_init_feeded_deprecated_params_set()
@property
def _deprecated_params_set(self):
return {name: True for name in self.get_feeded_deprecated_params()}
def __str__(self):
return json.dumps(self.as_dict(), ensure_ascii=False)
def as_dict(self):
def _recursive_convert_obj_to_dict(obj):
ret_dict = {}
for attr_name in list(obj.__dict__):
if attr_name in [_FEEDED_DEPRECATED_PARAMS, _DEPRECATED_PARAMS, _USER_FEEDED_PARAMS, _IS_RAW_CONF]:
continue
# get attr
attr = getattr(obj, attr_name)
if isinstance(attr, pd.DataFrame):
ret_dict[attr_name] = attr.to_dict()
continue
if attr and type(attr).__name__ not in dir(builtins):
ret_dict[attr_name] = _recursive_convert_obj_to_dict(attr)
else:
ret_dict[attr_name] = attr
return ret_dict
return _recursive_convert_obj_to_dict(self)
def update(self, conf, allow_redundant=False):
update_from_raw_conf = conf.get(_IS_RAW_CONF, True)
if update_from_raw_conf:
deprecated_params_set = self._get_or_init_deprecated_params_set()
feeded_deprecated_params_set = (
self._get_or_init_feeded_deprecated_params_set()
)
user_feeded_params_set = self._get_or_init_user_feeded_params_set()
setattr(self, _IS_RAW_CONF, False)
else:
feeded_deprecated_params_set = (
self._get_or_init_feeded_deprecated_params_set(conf)
)
user_feeded_params_set = self._get_or_init_user_feeded_params_set(conf)
def _recursive_update_param(param, config, depth, prefix):
if depth > settings.PARAM_MAXDEPTH:
raise ValueError("Param define nesting too deep!!!, can not parse it")
inst_variables = param.__dict__
redundant_attrs = []
for config_key, config_value in config.items():
# redundant attr
if config_key not in inst_variables:
if not update_from_raw_conf and config_key.startswith("_"):
setattr(param, config_key, config_value)
else:
setattr(param, config_key, config_value)
# redundant_attrs.append(config_key)
continue
full_config_key = f"{prefix}{config_key}"
if update_from_raw_conf:
# add user feeded params
user_feeded_params_set.add(full_config_key)
# update user feeded deprecated param set
if full_config_key in deprecated_params_set:
feeded_deprecated_params_set.add(full_config_key)
# supported attr
attr = getattr(param, config_key)
if type(attr).__name__ in dir(builtins) or attr is None:
setattr(param, config_key, config_value)
else:
# recursive set obj attr
sub_params = _recursive_update_param(
attr, config_value, depth + 1, prefix=f"{prefix}{config_key}."
)
setattr(param, config_key, sub_params)
if not allow_redundant and redundant_attrs:
raise ValueError(
f"cpn `{getattr(self, '_name', type(self))}` has redundant parameters: `{[redundant_attrs]}`"
)
return param
return _recursive_update_param(param=self, config=conf, depth=0, prefix="")
def extract_not_builtin(self):
def _get_not_builtin_types(obj):
ret_dict = {}
for variable in obj.__dict__:
attr = getattr(obj, variable)
if attr and type(attr).__name__ not in dir(builtins):
ret_dict[variable] = _get_not_builtin_types(attr)
return ret_dict
return _get_not_builtin_types(self)
def validate(self):
self.builtin_types = dir(builtins)
self.func = {
"ge": self._greater_equal_than,
"le": self._less_equal_than,
"in": self._in,
"not_in": self._not_in,
"range": self._range,
}
home_dir = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
param_validation_path_prefix = home_dir + "/param_validation/"
param_name = type(self).__name__
param_validation_path = "/".join(
[param_validation_path_prefix, param_name + ".json"]
)
validation_json = None
try:
with open(param_validation_path, "r") as fin:
validation_json = json.loads(fin.read())
except BaseException:
return
self._validate_param(self, validation_json)
def _validate_param(self, param_obj, validation_json):
default_section = type(param_obj).__name__
var_list = param_obj.__dict__
for variable in var_list:
attr = getattr(param_obj, variable)
if type(attr).__name__ in self.builtin_types or attr is None:
if variable not in validation_json:
continue
validation_dict = validation_json[default_section][variable]
value = getattr(param_obj, variable)
value_legal = False
for op_type in validation_dict:
if self.func[op_type](value, validation_dict[op_type]):
value_legal = True
break
if not value_legal:
raise ValueError(
"Plase check runtime conf, {} = {} does not match user-parameter restriction".format(
variable, value
)
)
elif variable in validation_json:
self._validate_param(attr, validation_json)
@staticmethod
def check_string(param, descr):
if type(param).__name__ not in ["str"]:
raise ValueError(
descr + " {} not supported, should be string type".format(param)
)
@staticmethod
def check_empty(param, descr):
if not param:
raise ValueError(
descr + " does not support empty value."
)
@staticmethod
def check_positive_integer(param, descr):
if type(param).__name__ not in ["int", "long"] or param <= 0:
raise ValueError(
descr + " {} not supported, should be positive integer".format(param)
)
@staticmethod
def check_positive_number(param, descr):
if type(param).__name__ not in ["float", "int", "long"] or param <= 0:
raise ValueError(
descr + " {} not supported, should be positive numeric".format(param)
)
@staticmethod
def check_nonnegative_number(param, descr):
if type(param).__name__ not in ["float", "int", "long"] or param < 0:
raise ValueError(
descr
+ " {} not supported, should be non-negative numeric".format(param)
)
@staticmethod
def check_decimal_float(param, descr):
if type(param).__name__ not in ["float", "int"] or param < 0 or param > 1:
raise ValueError(
descr
+ " {} not supported, should be a float number in range [0, 1]".format(
param
)
)
@staticmethod
def check_boolean(param, descr):
if type(param).__name__ != "bool":
raise ValueError(
descr + " {} not supported, should be bool type".format(param)
)
@staticmethod
def check_open_unit_interval(param, descr):
if type(param).__name__ not in ["float"] or param <= 0 or param >= 1:
raise ValueError(
descr + " should be a numeric number between 0 and 1 exclusively"
)
@staticmethod
def check_valid_value(param, descr, valid_values):
if param not in valid_values:
raise ValueError(
descr
+ " {} is not supported, it should be in {}".format(param, valid_values)
)
@staticmethod
def check_defined_type(param, descr, types):
if type(param).__name__ not in types:
raise ValueError(
descr + " {} not supported, should be one of {}".format(param, types)
)
@staticmethod
def check_and_change_lower(param, valid_list, descr=""):
if type(param).__name__ != "str":
raise ValueError(
descr
+ " {} not supported, should be one of {}".format(param, valid_list)
)
lower_param = param.lower()
if lower_param in valid_list:
return lower_param
else:
raise ValueError(
descr
+ " {} not supported, should be one of {}".format(param, valid_list)
)
@staticmethod
def _greater_equal_than(value, limit):
return value >= limit - settings.FLOAT_ZERO
@staticmethod
def _less_equal_than(value, limit):
return value <= limit + settings.FLOAT_ZERO
@staticmethod
def _range(value, ranges):
in_range = False
for left_limit, right_limit in ranges:
if (
left_limit - settings.FLOAT_ZERO
<= value
<= right_limit + settings.FLOAT_ZERO
):
in_range = True
break
return in_range
@staticmethod
def _in(value, right_value_list):
return value in right_value_list
@staticmethod
def _not_in(value, wrong_value_list):
return value not in wrong_value_list
def _warn_deprecated_param(self, param_name, descr):
if self._deprecated_params_set.get(param_name):
logging.warning(
f"{descr} {param_name} is deprecated and ignored in this version."
)
def _warn_to_deprecate_param(self, param_name, descr, new_param):
if self._deprecated_params_set.get(param_name):
logging.warning(
f"{descr} {param_name} will be deprecated in future release; "
f"please use {new_param} instead."
)
return True
return False
class ComponentBase(ABC):
component_name: str
def __str__(self):
"""
{
"component_name": "Begin",
"params": {}
}
"""
return """{{
"component_name": "{}",
"params": {},
"output": {},
"inputs": {}
}}""".format(self.component_name,
self._param,
json.dumps(json.loads(str(self._param)).get("output", {}), ensure_ascii=False),
json.dumps(json.loads(str(self._param)).get("inputs", []), ensure_ascii=False)
)
def __init__(self, canvas, id, param: ComponentParamBase):
self._canvas = canvas
self._id = id
self._param = param
self._param.check()
def get_dependent_components(self):
cpnts = set([para["component_id"].split("@")[0] for para in self._param.query \
if para.get("component_id") \
and para["component_id"].lower().find("answer") < 0 \
and para["component_id"].lower().find("begin") < 0])
return list(cpnts)
def run(self, history, **kwargs):
logging.debug("{}, history: {}, kwargs: {}".format(self, json.dumps(history, ensure_ascii=False),
json.dumps(kwargs, ensure_ascii=False)))
self._param.debug_inputs = []
try:
res = self._run(history, **kwargs)
self.set_output(res)
except Exception as e:
self.set_output(pd.DataFrame([{"content": str(e)}]))
raise e
return res
def _run(self, history, **kwargs):
raise NotImplementedError()
def output(self, allow_partial=True) -> Tuple[str, Union[pd.DataFrame, partial]]:
o = getattr(self._param, self._param.output_var_name)
if not isinstance(o, partial):
if not isinstance(o, pd.DataFrame):
if isinstance(o, list):
return self._param.output_var_name, pd.DataFrame(o)
if o is None:
return self._param.output_var_name, pd.DataFrame()
return self._param.output_var_name, pd.DataFrame([{"content": str(o)}])
return self._param.output_var_name, o
if allow_partial or not isinstance(o, partial):
if not isinstance(o, partial) and not isinstance(o, pd.DataFrame):
return pd.DataFrame(o if isinstance(o, list) else [o])
return self._param.output_var_name, o
outs = None
for oo in o():
if not isinstance(oo, pd.DataFrame):
outs = pd.DataFrame(oo if isinstance(oo, list) else [oo])
else:
outs = oo
return self._param.output_var_name, outs
def reset(self):
setattr(self._param, self._param.output_var_name, None)
self._param.inputs = []
def set_output(self, v):
setattr(self._param, self._param.output_var_name, v)
def get_input(self):
if self._param.debug_inputs:
return pd.DataFrame([{"content": v["value"]} for v in self._param.debug_inputs if v.get("value")])
reversed_cpnts = []
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
if self._param.query:
self._param.inputs = []
outs = []
for q in self._param.query:
if q.get("component_id"):
if q["component_id"].split("@")[0].lower().find("begin") >= 0:
cpn_id, key = q["component_id"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
outs.append(pd.DataFrame([{"content": p.get("value", "")}]))
self._param.inputs.append({"component_id": q["component_id"],
"content": p.get("value", "")})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
if q["component_id"].lower().find("answer") == 0:
txt = []
for r, c in self._canvas.history[::-1][:self._param.message_history_window_size][::-1]:
txt.append(f"{r.upper()}: {c}")
txt = "\n".join(txt)
self._param.inputs.append({"content": txt, "component_id": q["component_id"]})
outs.append(pd.DataFrame([{"content": txt}]))
continue
outs.append(self._canvas.get_component(q["component_id"])["obj"].output(allow_partial=False)[1])
self._param.inputs.append({"component_id": q["component_id"],
"content": "\n".join(
[str(d["content"]) for d in outs[-1].to_dict('records')])})
elif q.get("value"):
self._param.inputs.append({"component_id": None, "content": q["value"]})
outs.append(pd.DataFrame([{"content": q["value"]}]))
if outs:
df = pd.concat(outs, ignore_index=True)
if "content" in df:
df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
return df
upstream_outs = []
for u in reversed_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "concentrator"]:
continue
if self.component_name.lower() == "generate" and self.get_component_name(u) == "retrieval":
o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
if o is not None:
o["component_id"] = u
upstream_outs.append(o)
continue
#if self.component_name.lower()!="answer" and u not in self._canvas.get_component(self._id)["upstream"]: continue
if self.component_name.lower().find("switch") < 0 \
and self.get_component_name(u) in ["relevant", "categorize"]:
continue
if u.lower().find("answer") >= 0:
for r, c in self._canvas.history[::-1]:
if r == "user":
upstream_outs.append(pd.DataFrame([{"content": c, "component_id": u}]))
break
break
if self.component_name.lower().find("answer") >= 0 and self.get_component_name(u) in ["relevant"]:
continue
o = self._canvas.get_component(u)["obj"].output(allow_partial=False)[1]
if o is not None:
o["component_id"] = u
upstream_outs.append(o)
break
assert upstream_outs, "Can't inference the where the component input is. Please identify whose output is this component's input."
df = pd.concat(upstream_outs, ignore_index=True)
if "content" in df:
df = df.drop_duplicates(subset=['content']).reset_index(drop=True)
self._param.inputs = []
for _, r in df.iterrows():
self._param.inputs.append({"component_id": r["component_id"], "content": r["content"]})
return df
def get_input_elements(self):
assert self._param.query, "Please identify input parameters firstly."
eles = []
for q in self._param.query:
if q.get("component_id"):
cpn_id = q["component_id"]
if cpn_id.split("@")[0].lower().find("begin") >= 0:
cpn_id, key = cpn_id.split("@")
eles.extend(self._canvas.get_component(cpn_id)["obj"]._param.query)
continue
eles.append({"name": self._canvas.get_component_name(cpn_id), "key": cpn_id})
else:
eles.append({"key": q["value"], "name": q["value"], "value": q["value"]})
return eles
def get_stream_input(self):
reversed_cpnts = []
if len(self._canvas.path) > 1:
reversed_cpnts.extend(self._canvas.path[-2])
reversed_cpnts.extend(self._canvas.path[-1])
for u in reversed_cpnts[::-1]:
if self.get_component_name(u) in ["switch", "answer"]:
continue
return self._canvas.get_component(u)["obj"].output()[1]
@staticmethod
def be_output(v):
return pd.DataFrame([{"content": v}])
def get_component_name(self, cpn_id):
return self._canvas.get_component(cpn_id)["obj"].component_name.lower()
def debug(self, **kwargs):
return self._run([], **kwargs)
def get_parent(self):
pid = self._canvas.get_component(self._id)["parent_id"]
return self._canvas.get_component(pid)["obj"]

View File

@ -1,49 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from functools import partial
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class BeginParam(ComponentParamBase):
"""
Define the Begin component parameters.
"""
def __init__(self):
super().__init__()
self.prologue = "Hi! I'm your smart assistant. What can I do for you?"
self.query = []
def check(self):
return True
class Begin(ComponentBase):
component_name = "Begin"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
return pd.DataFrame([{"content": self._param.prologue}])
def stream_output(self):
res = {"content": self._param.prologue}
yield res
self.set_output(self.be_output(res))

View File

@ -1,84 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import requests
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class BingParam(ComponentParamBase):
"""
Define the Bing component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.channel = "Webpages"
self.api_key = "YOUR_ACCESS_KEY"
self.country = "CN"
self.language = "en"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.channel, "Bing Web Search or Bing News", ["Webpages", "News"])
self.check_empty(self.api_key, "Bing subscription key")
self.check_valid_value(self.country, "Bing Country",
['AR', 'AU', 'AT', 'BE', 'BR', 'CA', 'CL', 'DK', 'FI', 'FR', 'DE', 'HK', 'IN', 'ID',
'IT', 'JP', 'KR', 'MY', 'MX', 'NL', 'NZ', 'NO', 'CN', 'PL', 'PT', 'PH', 'RU', 'SA',
'ZA', 'ES', 'SE', 'CH', 'TW', 'TR', 'GB', 'US'])
self.check_valid_value(self.language, "Bing Languages",
['ar', 'eu', 'bn', 'bg', 'ca', 'ns', 'nt', 'hr', 'cs', 'da', 'nl', 'en', 'gb', 'et',
'fi', 'fr', 'gl', 'de', 'gu', 'he', 'hi', 'hu', 'is', 'it', 'jp', 'kn', 'ko', 'lv',
'lt', 'ms', 'ml', 'mr', 'nb', 'pl', 'br', 'pt', 'pa', 'ro', 'ru', 'sr', 'sk', 'sl',
'es', 'sv', 'ta', 'te', 'th', 'tr', 'uk', 'vi'])
class Bing(ComponentBase, ABC):
component_name = "Bing"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Bing.be_output("")
try:
headers = {"Ocp-Apim-Subscription-Key": self._param.api_key, 'Accept-Language': self._param.language}
params = {"q": ans, "textDecorations": True, "textFormat": "HTML", "cc": self._param.country,
"answerCount": 1, "promote": self._param.channel}
if self._param.channel == "Webpages":
response = requests.get("https://api.bing.microsoft.com/v7.0/search", headers=headers, params=params)
response.raise_for_status()
search_results = response.json()
bing_res = [{"content": '<a href="' + i["url"] + '">' + i["name"] + '</a> ' + i["snippet"]} for i in
search_results["webPages"]["value"]]
elif self._param.channel == "News":
response = requests.get("https://api.bing.microsoft.com/v7.0/news/search", headers=headers,
params=params)
response.raise_for_status()
search_results = response.json()
bing_res = [{"content": '<a href="' + i["url"] + '">' + i["name"] + '</a> ' + i["description"]} for i
in search_results['news']['value']]
except Exception as e:
return Bing.be_output("**ERROR**: " + str(e))
if not bing_res:
return Bing.be_output("")
df = pd.DataFrame(bing_res)
logging.debug(f"df: {str(df)}")
return df

View File

@ -1,98 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component import GenerateParam, Generate
class CategorizeParam(GenerateParam):
"""
Define the Categorize component parameters.
"""
def __init__(self):
super().__init__()
self.category_description = {}
self.prompt = ""
def check(self):
super().check()
self.check_empty(self.category_description, "[Categorize] Category examples")
for k, v in self.category_description.items():
if not k:
raise ValueError("[Categorize] Category name can not be empty!")
if not v.get("to"):
raise ValueError(f"[Categorize] 'To' of category {k} can not be empty!")
def get_prompt(self, chat_hist):
cate_lines = []
for c, desc in self.category_description.items():
for line in desc.get("examples", "").split("\n"):
if not line:
continue
cate_lines.append("USER: {}\nCategory: {}".format(line, c))
descriptions = []
for c, desc in self.category_description.items():
if desc.get("description"):
descriptions.append(
"--------------------\nCategory: {}\nDescription: {}\n".format(c, desc["description"]))
self.prompt = """
You're a text classifier. You need to categorize the users questions into {} categories,
namely: {}
Here's description of each category:
{}
You could learn from the following examples:
{}
You could learn from the above examples.
Just mention the category names, no need for any additional words.
---- Real Data ----
{}
""".format(
len(self.category_description.keys()),
"/".join(list(self.category_description.keys())),
"\n".join(descriptions),
"- ".join(cate_lines),
chat_hist
)
return self.prompt
class Categorize(Generate, ABC):
component_name = "Categorize"
def _run(self, history, **kwargs):
input = self.get_input()
input = " - ".join(input["content"]) if "content" in input else ""
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(input), [{"role": "user", "content": "\nCategory: "}],
self._param.gen_conf())
logging.debug(f"input: {input}, answer: {str(ans)}")
for c in self._param.category_description.keys():
if ans.lower().find(c.lower()) >= 0:
return Categorize.be_output(self._param.category_description[c]["to"])
return Categorize.be_output(list(self._param.category_description.items())[-1][1]["to"])
def debug(self, **kwargs):
df = self._run([], **kwargs)
cpn_id = df.iloc[0, 0]
return Categorize.be_output(self._canvas.get_component_name(cpn_id))

View File

@ -1,36 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class ConcentratorParam(ComponentParamBase):
"""
Define the Concentrator component parameters.
"""
def __init__(self):
super().__init__()
def check(self):
return True
class Concentrator(ComponentBase, ABC):
component_name = "Concentrator"
def _run(self, history, **kwargs):
return Concentrator.be_output("")

View File

@ -1,67 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import asyncio
from crawl4ai import AsyncWebCrawler
from agent.component.base import ComponentBase, ComponentParamBase
from api.utils.web_utils import is_valid_url
class CrawlerParam(ComponentParamBase):
"""
Define the Crawler component parameters.
"""
def __init__(self):
super().__init__()
self.proxy = None
self.extract_type = "markdown"
def check(self):
self.check_valid_value(self.extract_type, "Type of content from the crawler", ['html', 'markdown', 'content'])
class Crawler(ComponentBase, ABC):
component_name = "Crawler"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not is_valid_url(ans):
return Crawler.be_output("URL not valid")
try:
result = asyncio.run(self.get_web(ans))
return Crawler.be_output(result)
except Exception as e:
return Crawler.be_output(f"An unexpected error occurred: {str(e)}")
async def get_web(self, url):
proxy = self._param.proxy if self._param.proxy else None
async with AsyncWebCrawler(verbose=True, proxy=proxy) as crawler:
result = await crawler.arun(
url=url,
bypass_cache=True
)
if self._param.extract_type == 'html':
return result.cleaned_html
elif self._param.extract_type == 'markdown':
return result.markdown
elif self._param.extract_type == 'content':
result.extracted_content
return result.markdown

View File

@ -1,61 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
import deepl
class DeepLParam(ComponentParamBase):
"""
Define the DeepL component parameters.
"""
def __init__(self):
super().__init__()
self.auth_key = "xxx"
self.parameters = []
self.source_lang = 'ZH'
self.target_lang = 'EN-GB'
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.source_lang, "Source language",
['AR', 'BG', 'CS', 'DA', 'DE', 'EL', 'EN', 'ES', 'ET', 'FI', 'FR', 'HU', 'ID', 'IT',
'JA', 'KO', 'LT', 'LV', 'NB', 'NL', 'PL', 'PT', 'RO', 'RU', 'SK', 'SL', 'SV', 'TR',
'UK', 'ZH'])
self.check_valid_value(self.target_lang, "Target language",
['AR', 'BG', 'CS', 'DA', 'DE', 'EL', 'EN-GB', 'EN-US', 'ES', 'ET', 'FI', 'FR', 'HU',
'ID', 'IT', 'JA', 'KO', 'LT', 'LV', 'NB', 'NL', 'PL', 'PT-BR', 'PT-PT', 'RO', 'RU',
'SK', 'SL', 'SV', 'TR', 'UK', 'ZH'])
class DeepL(ComponentBase, ABC):
component_name = "GitHub"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return DeepL.be_output("")
try:
translator = deepl.Translator(self._param.auth_key)
result = translator.translate_text(ans, source_lang=self._param.source_lang,
target_lang=self._param.target_lang)
return DeepL.be_output(result.text)
except Exception as e:
DeepL.be_output("**Error**:" + str(e))

View File

@ -1,66 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from duckduckgo_search import DDGS
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class DuckDuckGoParam(ComponentParamBase):
"""
Define the DuckDuckGo component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.channel = "text"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.channel, "Web Search or News", ["text", "news"])
class DuckDuckGo(ComponentBase, ABC):
component_name = "DuckDuckGo"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return DuckDuckGo.be_output("")
try:
if self._param.channel == "text":
with DDGS() as ddgs:
# {'title': '', 'href': '', 'body': ''}
duck_res = [{"content": '<a href="' + i["href"] + '">' + i["title"] + '</a> ' + i["body"]} for i
in ddgs.text(ans, max_results=self._param.top_n)]
elif self._param.channel == "news":
with DDGS() as ddgs:
# {'date': '', 'title': '', 'body': '', 'url': '', 'image': '', 'source': ''}
duck_res = [{"content": '<a href="' + i["url"] + '">' + i["title"] + '</a> ' + i["body"]} for i
in ddgs.news(ans, max_results=self._param.top_n)]
except Exception as e:
return DuckDuckGo.be_output("**ERROR**: " + str(e))
if not duck_res:
return DuckDuckGo.be_output("")
df = pd.DataFrame(duck_res)
logging.debug("df: {df}")
return df

View File

@ -1,138 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import json
import smtplib
import logging
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.header import Header
from email.utils import formataddr
from agent.component.base import ComponentBase, ComponentParamBase
class EmailParam(ComponentParamBase):
"""
Define the Email component parameters.
"""
def __init__(self):
super().__init__()
# Fixed configuration parameters
self.smtp_server = "" # SMTP server address
self.smtp_port = 465 # SMTP port
self.email = "" # Sender email
self.password = "" # Email authorization code
self.sender_name = "" # Sender name
def check(self):
# Check required parameters
self.check_empty(self.smtp_server, "SMTP Server")
self.check_empty(self.email, "Email")
self.check_empty(self.password, "Password")
self.check_empty(self.sender_name, "Sender Name")
class Email(ComponentBase, ABC):
component_name = "Email"
def _run(self, history, **kwargs):
# Get upstream component output and parse JSON
ans = self.get_input()
content = "".join(ans["content"]) if "content" in ans else ""
if not content:
return Email.be_output("No content to send")
success = False
try:
# Parse JSON string passed from upstream
email_data = json.loads(content)
# Validate required fields
if "to_email" not in email_data:
return Email.be_output("Missing required field: to_email")
# Create email object
msg = MIMEMultipart('alternative')
# Properly handle sender name encoding
msg['From'] = formataddr((str(Header(self._param.sender_name,'utf-8')), self._param.email))
msg['To'] = email_data["to_email"]
if "cc_email" in email_data and email_data["cc_email"]:
msg['Cc'] = email_data["cc_email"]
msg['Subject'] = Header(email_data.get("subject", "No Subject"), 'utf-8').encode()
# Use content from email_data or default content
email_content = email_data.get("content", "No content provided")
# msg.attach(MIMEText(email_content, 'plain', 'utf-8'))
msg.attach(MIMEText(email_content, 'html', 'utf-8'))
# Connect to SMTP server and send
logging.info(f"Connecting to SMTP server {self._param.smtp_server}:{self._param.smtp_port}")
context = smtplib.ssl.create_default_context()
with smtplib.SMTP_SSL(self._param.smtp_server, self._param.smtp_port, context=context) as server:
# Login
logging.info(f"Attempting to login with email: {self._param.email}")
server.login(self._param.email, self._param.password)
# Get all recipient list
recipients = [email_data["to_email"]]
if "cc_email" in email_data and email_data["cc_email"]:
recipients.extend(email_data["cc_email"].split(','))
# Send email
logging.info(f"Sending email to recipients: {recipients}")
try:
server.send_message(msg, self._param.email, recipients)
success = True
except Exception as e:
logging.error(f"Error during send_message: {str(e)}")
# Try alternative method
server.sendmail(self._param.email, recipients, msg.as_string())
success = True
try:
server.quit()
except Exception as e:
# Ignore errors when closing connection
logging.warning(f"Non-fatal error during connection close: {str(e)}")
if success:
return Email.be_output("Email sent successfully")
except json.JSONDecodeError:
error_msg = "Invalid JSON format in input"
logging.error(error_msg)
return Email.be_output(error_msg)
except smtplib.SMTPAuthenticationError:
error_msg = "SMTP Authentication failed. Please check your email and authorization code."
logging.error(error_msg)
return Email.be_output(f"Failed to send email: {error_msg}")
except smtplib.SMTPConnectError:
error_msg = f"Failed to connect to SMTP server {self._param.smtp_server}:{self._param.smtp_port}"
logging.error(error_msg)
return Email.be_output(f"Failed to send email: {error_msg}")
except smtplib.SMTPException as e:
error_msg = f"SMTP error occurred: {str(e)}"
logging.error(error_msg)
return Email.be_output(f"Failed to send email: {error_msg}")
except Exception as e:
error_msg = f"Unexpected error: {str(e)}"
logging.error(error_msg)
return Email.be_output(f"Failed to send email: {error_msg}")

View File

@ -1,154 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import re
from copy import deepcopy
import pandas as pd
import pymysql
import psycopg2
from agent.component import GenerateParam, Generate
import pyodbc
import logging
class ExeSQLParam(GenerateParam):
"""
Define the ExeSQL component parameters.
"""
def __init__(self):
super().__init__()
self.db_type = "mysql"
self.database = ""
self.username = ""
self.host = ""
self.port = 3306
self.password = ""
self.loop = 3
self.top_n = 30
def check(self):
super().check()
self.check_valid_value(self.db_type, "Choose DB type", ['mysql', 'postgresql', 'mariadb', 'mssql'])
self.check_empty(self.database, "Database name")
self.check_empty(self.username, "database username")
self.check_empty(self.host, "IP Address")
self.check_positive_integer(self.port, "IP Port")
self.check_empty(self.password, "Database password")
self.check_positive_integer(self.top_n, "Number of records")
if self.database == "rag_flow":
if self.host == "ragflow-mysql":
raise ValueError("For the security reason, it dose not support database named rag_flow.")
if self.password == "infini_rag_flow":
raise ValueError("For the security reason, it dose not support database named rag_flow.")
class ExeSQL(Generate, ABC):
component_name = "ExeSQL"
def _refactor(self, ans):
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
match = re.search(r"```sql\s*(.*?)\s*```", ans, re.DOTALL)
if match:
ans = match.group(1) # Query content
return ans
else:
print("no markdown")
ans = re.sub(r'^.*?SELECT ', 'SELECT ', (ans), flags=re.IGNORECASE)
ans = re.sub(r';.*?SELECT ', '; SELECT ', ans, flags=re.IGNORECASE)
ans = re.sub(r';[^;]*$', r';', ans)
if not ans:
raise Exception("SQL statement not found!")
return ans
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join([str(a) for a in ans["content"]]) if "content" in ans else ""
ans = self._refactor(ans)
if self._param.db_type in ["mysql", "mariadb"]:
db = pymysql.connect(db=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'postgresql':
db = psycopg2.connect(dbname=self._param.database, user=self._param.username, host=self._param.host,
port=self._param.port, password=self._param.password)
elif self._param.db_type == 'mssql':
conn_str = (
r'DRIVER={ODBC Driver 17 for SQL Server};'
r'SERVER=' + self._param.host + ',' + str(self._param.port) + ';'
r'DATABASE=' + self._param.database + ';'
r'UID=' + self._param.username + ';'
r'PWD=' + self._param.password
)
db = pyodbc.connect(conn_str)
try:
cursor = db.cursor()
except Exception as e:
raise Exception("Database Connection Failed! \n" + str(e))
if not hasattr(self, "_loop"):
setattr(self, "_loop", 0)
self._loop += 1
input_list = re.split(r';', ans.replace(r"\n", " "))
sql_res = []
for i in range(len(input_list)):
single_sql = input_list[i]
while self._loop <= self._param.loop:
self._loop += 1
if not single_sql:
break
try:
cursor.execute(single_sql)
if cursor.rowcount == 0:
sql_res.append({"content": "No record in the database!"})
break
if self._param.db_type == 'mssql':
single_res = pd.DataFrame.from_records(cursor.fetchmany(self._param.top_n),
columns=[desc[0] for desc in cursor.description])
else:
single_res = pd.DataFrame([i for i in cursor.fetchmany(self._param.top_n)])
single_res.columns = [i[0] for i in cursor.description]
sql_res.append({"content": single_res.to_markdown(index=False, floatfmt=".6f")})
break
except Exception as e:
single_sql = self._regenerate_sql(single_sql, str(e), **kwargs)
single_sql = self._refactor(single_sql)
if self._loop > self._param.loop:
sql_res.append({"content": "Can't query the correct data via SQL statement."})
db.close()
if not sql_res:
return ExeSQL.be_output("")
return pd.DataFrame(sql_res)
def _regenerate_sql(self, failed_sql, error_message, **kwargs):
prompt = f'''
## You are the Repair SQL Statement Helper, please modify the original SQL statement based on the SQL query error report.
## The original SQL statement is as follows:{failed_sql}.
## The contents of the SQL query error report is as follows:{error_message}.
## Answer only the modified SQL statement. Please do not give any explanation, just answer the code.
'''
self._param.prompt = prompt
kwargs_ = deepcopy(kwargs)
kwargs_["stream"] = False
response = Generate._run(self, [], **kwargs_)
try:
regenerated_sql = response.loc[0, "content"]
return regenerated_sql
except Exception as e:
logging.error(f"Failed to regenerate SQL: {e}")
return None
def debug(self, **kwargs):
return self._run([], **kwargs)

View File

@ -1,250 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from functools import partial
import pandas as pd
from api.db import LLMType
from api.db.services.conversation_service import structure_answer
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.prompts import message_fit_in
class GenerateParam(ComponentParamBase):
"""
Define the Generate component parameters.
"""
def __init__(self):
super().__init__()
self.llm_id = ""
self.prompt = ""
self.max_tokens = 0
self.temperature = 0
self.top_p = 0
self.presence_penalty = 0
self.frequency_penalty = 0
self.cite = True
self.parameters = []
def check(self):
self.check_decimal_float(self.temperature, "[Generate] Temperature")
self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
self.check_decimal_float(self.top_p, "[Generate] Top P")
self.check_empty(self.llm_id, "[Generate] LLM")
# self.check_defined_type(self.parameters, "Parameters", ["list"])
def gen_conf(self):
conf = {}
if self.max_tokens > 0:
conf["max_tokens"] = self.max_tokens
if self.temperature > 0:
conf["temperature"] = self.temperature
if self.top_p > 0:
conf["top_p"] = self.top_p
if self.presence_penalty > 0:
conf["presence_penalty"] = self.presence_penalty
if self.frequency_penalty > 0:
conf["frequency_penalty"] = self.frequency_penalty
return conf
class Generate(ComponentBase):
component_name = "Generate"
def get_dependent_components(self):
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs[1:] if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def set_cite(self, retrieval_res, answer):
retrieval_res = retrieval_res.dropna(subset=["vector", "content_ltks"]).reset_index(drop=True)
if "empty_response" in retrieval_res.columns:
retrieval_res["empty_response"].fillna("", inplace=True)
answer, idx = settings.retrievaler.insert_citations(answer,
[ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
[ck["vector"] for _, ck in retrieval_res.iterrows()],
LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
self._canvas.get_embedding_model()), tkweight=0.7,
vtweight=0.3)
doc_ids = set([])
recall_docs = []
for i in idx:
did = retrieval_res.loc[int(i), "doc_id"]
if did in doc_ids:
continue
doc_ids.add(did)
recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})
del retrieval_res["vector"]
del retrieval_res["content_ltks"]
reference = {
"chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
"doc_aggs": recall_docs
}
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
res = {"content": answer, "reference": reference}
res = structure_answer(None, res, "", "")
return res
def get_input_elements(self):
key_set = set([])
res = [{"key": "user", "name": "Input your question here:"}]
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.prompt, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_component_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
prompt = self._param.prompt
retrieval_res = []
self._param.inputs = []
for para in self.get_input_elements()[1:]:
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
kwargs[para["key"]] = p.get("value", "")
self._param.inputs.append(
{"component_id": para["key"], "content": kwargs[para["key"]]})
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
if hist:
hist = hist[0]["content"]
else:
hist = ""
kwargs[para["key"]] = hist
continue
_, out = cpn.output(allow_partial=False)
if "content" not in out.columns:
kwargs[para["key"]] = ""
else:
if cpn.component_name.lower() == "retrieval":
retrieval_res.append(out)
kwargs[para["key"]] = " - " + "\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
self._param.inputs.append({"component_id": para["key"], "content": kwargs[para["key"]]})
if retrieval_res:
retrieval_res = pd.concat(retrieval_res, ignore_index=True)
else:
retrieval_res = pd.DataFrame([])
for n, v in kwargs.items():
prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
if not self._param.inputs and prompt.find("{input}") >= 0:
retrieval_res = self.get_input()
input = (" - " + "\n - ".join(
[c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
prompt = re.sub(r"\{input\}", re.escape(input), prompt)
downstreams = self._canvas.get_component(self._id)["downstream"]
if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
"obj"].component_name.lower() == "answer":
return partial(self.stream_output, chat_mdl, prompt, retrieval_res)
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
return pd.DataFrame([res])
msg = self._canvas.get_history(self._param.message_history_window_size)
if len(msg) < 1:
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": "Output: "})
ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
res = self.set_cite(retrieval_res, ans)
return pd.DataFrame([res])
return Generate.be_output(ans)
def stream_output(self, chat_mdl, prompt, retrieval_res):
res = None
if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
yield res
self.set_output(res)
return
msg = self._canvas.get_history(self._param.message_history_window_size)
if msg and msg[0]['role'] == 'assistant':
msg.pop(0)
if len(msg) < 1:
msg.append({"role": "user", "content": "Output: "})
_, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
if len(msg) < 2:
msg.append({"role": "user", "content": "Output: "})
answer = ""
for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
res = {"content": ans, "reference": []}
answer = ans
yield res
if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
res = self.set_cite(retrieval_res, answer)
yield res
self.set_output(Generate.be_output(res))
def debug(self, **kwargs):
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
prompt = self._param.prompt
for para in self._param.debug_inputs:
kwargs[para["key"]] = para.get("value", "")
for n, v in kwargs.items():
prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)
u = kwargs.get("user")
ans = chat_mdl.chat(prompt, [{"role": "user", "content": u if u else "Output: "}], self._param.gen_conf())
return pd.DataFrame([ans])

View File

@ -1,61 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class GitHubParam(ComponentParamBase):
"""
Define the GitHub component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class GitHub(ComponentBase, ABC):
component_name = "GitHub"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return GitHub.be_output("")
try:
url = 'https://api.github.com/search/repositories?q=' + ans + '&sort=stars&order=desc&per_page=' + str(
self._param.top_n)
headers = {"Content-Type": "application/vnd.github+json", "X-GitHub-Api-Version": '2022-11-28'}
response = requests.get(url=url, headers=headers).json()
github_res = [{"content": '<a href="' + i["html_url"] + '">' + i["name"] + '</a>' + str(
i["description"]) + '\n stars:' + str(i['watchers'])} for i in response['items']]
except Exception as e:
return GitHub.be_output("**ERROR**: " + str(e))
if not github_res:
return GitHub.be_output("")
df = pd.DataFrame(github_res)
logging.debug(f"df: {df}")
return df

View File

@ -1,96 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from serpapi import GoogleSearch
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class GoogleParam(ComponentParamBase):
"""
Define the Google component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.api_key = "xxx"
self.country = "cn"
self.language = "en"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_empty(self.api_key, "SerpApi API key")
self.check_valid_value(self.country, "Google Country",
['af', 'al', 'dz', 'as', 'ad', 'ao', 'ai', 'aq', 'ag', 'ar', 'am', 'aw', 'au', 'at',
'az', 'bs', 'bh', 'bd', 'bb', 'by', 'be', 'bz', 'bj', 'bm', 'bt', 'bo', 'ba', 'bw',
'bv', 'br', 'io', 'bn', 'bg', 'bf', 'bi', 'kh', 'cm', 'ca', 'cv', 'ky', 'cf', 'td',
'cl', 'cn', 'cx', 'cc', 'co', 'km', 'cg', 'cd', 'ck', 'cr', 'ci', 'hr', 'cu', 'cy',
'cz', 'dk', 'dj', 'dm', 'do', 'ec', 'eg', 'sv', 'gq', 'er', 'ee', 'et', 'fk', 'fo',
'fj', 'fi', 'fr', 'gf', 'pf', 'tf', 'ga', 'gm', 'ge', 'de', 'gh', 'gi', 'gr', 'gl',
'gd', 'gp', 'gu', 'gt', 'gn', 'gw', 'gy', 'ht', 'hm', 'va', 'hn', 'hk', 'hu', 'is',
'in', 'id', 'ir', 'iq', 'ie', 'il', 'it', 'jm', 'jp', 'jo', 'kz', 'ke', 'ki', 'kp',
'kr', 'kw', 'kg', 'la', 'lv', 'lb', 'ls', 'lr', 'ly', 'li', 'lt', 'lu', 'mo', 'mk',
'mg', 'mw', 'my', 'mv', 'ml', 'mt', 'mh', 'mq', 'mr', 'mu', 'yt', 'mx', 'fm', 'md',
'mc', 'mn', 'ms', 'ma', 'mz', 'mm', 'na', 'nr', 'np', 'nl', 'an', 'nc', 'nz', 'ni',
'ne', 'ng', 'nu', 'nf', 'mp', 'no', 'om', 'pk', 'pw', 'ps', 'pa', 'pg', 'py', 'pe',
'ph', 'pn', 'pl', 'pt', 'pr', 'qa', 're', 'ro', 'ru', 'rw', 'sh', 'kn', 'lc', 'pm',
'vc', 'ws', 'sm', 'st', 'sa', 'sn', 'rs', 'sc', 'sl', 'sg', 'sk', 'si', 'sb', 'so',
'za', 'gs', 'es', 'lk', 'sd', 'sr', 'sj', 'sz', 'se', 'ch', 'sy', 'tw', 'tj', 'tz',
'th', 'tl', 'tg', 'tk', 'to', 'tt', 'tn', 'tr', 'tm', 'tc', 'tv', 'ug', 'ua', 'ae',
'uk', 'gb', 'us', 'um', 'uy', 'uz', 'vu', 've', 'vn', 'vg', 'vi', 'wf', 'eh', 'ye',
'zm', 'zw'])
self.check_valid_value(self.language, "Google languages",
['af', 'ak', 'sq', 'ws', 'am', 'ar', 'hy', 'az', 'eu', 'be', 'bem', 'bn', 'bh',
'xx-bork', 'bs', 'br', 'bg', 'bt', 'km', 'ca', 'chr', 'ny', 'zh-cn', 'zh-tw', 'co',
'hr', 'cs', 'da', 'nl', 'xx-elmer', 'en', 'eo', 'et', 'ee', 'fo', 'tl', 'fi', 'fr',
'fy', 'gaa', 'gl', 'ka', 'de', 'el', 'kl', 'gn', 'gu', 'xx-hacker', 'ht', 'ha', 'haw',
'iw', 'hi', 'hu', 'is', 'ig', 'id', 'ia', 'ga', 'it', 'ja', 'jw', 'kn', 'kk', 'rw',
'rn', 'xx-klingon', 'kg', 'ko', 'kri', 'ku', 'ckb', 'ky', 'lo', 'la', 'lv', 'ln', 'lt',
'loz', 'lg', 'ach', 'mk', 'mg', 'ms', 'ml', 'mt', 'mv', 'mi', 'mr', 'mfe', 'mo', 'mn',
'sr-me', 'my', 'ne', 'pcm', 'nso', 'no', 'nn', 'oc', 'or', 'om', 'ps', 'fa',
'xx-pirate', 'pl', 'pt', 'pt-br', 'pt-pt', 'pa', 'qu', 'ro', 'rm', 'nyn', 'ru', 'gd',
'sr', 'sh', 'st', 'tn', 'crs', 'sn', 'sd', 'si', 'sk', 'sl', 'so', 'es', 'es-419', 'su',
'sw', 'sv', 'tg', 'ta', 'tt', 'te', 'th', 'ti', 'to', 'lua', 'tum', 'tr', 'tk', 'tw',
'ug', 'uk', 'ur', 'uz', 'vu', 'vi', 'cy', 'wo', 'xh', 'yi', 'yo', 'zu']
)
class Google(ComponentBase, ABC):
component_name = "Google"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Google.be_output("")
try:
client = GoogleSearch(
{"engine": "google", "q": ans, "api_key": self._param.api_key, "gl": self._param.country,
"hl": self._param.language, "num": self._param.top_n})
google_res = [{"content": '<a href="' + i["link"] + '">' + i["title"] + '</a> ' + i["snippet"]} for i in
client.get_dict()["organic_results"]]
except Exception:
return Google.be_output("**ERROR**: Existing Unavailable Parameters!")
if not google_res:
return Google.be_output("")
df = pd.DataFrame(google_res)
logging.debug(f"df: {df}")
return df

View File

@ -1,70 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
from scholarly import scholarly
class GoogleScholarParam(ComponentParamBase):
"""
Define the GoogleScholar component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 6
self.sort_by = 'relevance'
self.year_low = None
self.year_high = None
self.patents = True
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.sort_by, "GoogleScholar Sort_by", ['date', 'relevance'])
self.check_boolean(self.patents, "Whether or not to include patents, defaults to True")
class GoogleScholar(ComponentBase, ABC):
component_name = "GoogleScholar"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return GoogleScholar.be_output("")
scholar_client = scholarly.search_pubs(ans, patents=self._param.patents, year_low=self._param.year_low,
year_high=self._param.year_high, sort_by=self._param.sort_by)
scholar_res = []
for i in range(self._param.top_n):
try:
pub = next(scholar_client)
scholar_res.append({"content": 'Title: ' + pub['bib']['title'] + '\n_Url: <a href="' + pub[
'pub_url'] + '"></a> ' + "\n author: " + ",".join(pub['bib']['author']) + '\n Abstract: ' + pub[
'bib'].get('abstract', 'no abstract')})
except StopIteration or Exception:
logging.exception("GoogleScholar")
break
if not scholar_res:
return GoogleScholar.be_output("")
df = pd.DataFrame(scholar_res)
logging.debug(f"df: {df}")
return df

View File

@ -1,108 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
from abc import ABC
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class InvokeParam(ComponentParamBase):
"""
Define the Crawler component parameters.
"""
def __init__(self):
super().__init__()
self.proxy = None
self.headers = ""
self.method = "get"
self.variables = []
self.url = ""
self.timeout = 60
self.clean_html = False
self.datatype = "json" # New parameter to determine data posting type
def check(self):
self.check_valid_value(self.method.lower(), "Type of content from the crawler", ["get", "post", "put"])
self.check_empty(self.url, "End point URL")
self.check_positive_integer(self.timeout, "Timeout time in second")
self.check_boolean(self.clean_html, "Clean HTML")
self.check_valid_value(self.datatype.lower(), "Data post type", ["json", "formdata"]) # Check for valid datapost value
class Invoke(ComponentBase, ABC):
component_name = "Invoke"
def _run(self, history, **kwargs):
args = {}
for para in self._param.variables:
if para.get("component_id"):
if "@" in para["component_id"]:
component = para["component_id"].split("@")[0]
field = para["component_id"].split("@")[1]
cpn = self._canvas.get_component(component)["obj"]
for param in cpn._param.query:
if param["key"] == field:
if "value" in param:
args[para["key"]] = param["value"]
else:
cpn = self._canvas.get_component(para["component_id"])["obj"]
if cpn.component_name.lower() == "answer":
args[para["key"]] = self._canvas.get_history(1)[0]["content"]
continue
_, out = cpn.output(allow_partial=False)
if not out.empty:
args[para["key"]] = "\n".join(out["content"])
else:
args[para["key"]] = para["value"]
url = self._param.url.strip()
if url.find("http") != 0:
url = "http://" + url
method = self._param.method.lower()
headers = {}
if self._param.headers:
headers = json.loads(self._param.headers)
proxies = None
if re.sub(r"https?:?/?/?", "", self._param.proxy):
proxies = {"http": self._param.proxy, "https": self._param.proxy}
if method == "get":
response = requests.get(url=url, params=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
if self._param.clean_html:
return Invoke.be_output("\n")
return Invoke.be_output(response.text)
if method == "put":
if self._param.datatype.lower() == "json":
response = requests.put(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
else:
response = requests.put(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
if self._param.clean_html:
return Invoke.be_output("\n".join())
return Invoke.be_output(response.text)
if method == "post":
if self._param.datatype.lower() == "json":
response = requests.post(url=url, json=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
else:
response = requests.post(url=url, data=args, headers=headers, proxies=proxies, timeout=self._param.timeout)
if self._param.clean_html:
return Invoke.be_output("\n".join())
return Invoke.be_output(response.text)

View File

@ -1,45 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class IterationParam(ComponentParamBase):
"""
Define the Iteration component parameters.
"""
def __init__(self):
super().__init__()
self.delimiter = ","
def check(self):
self.check_empty(self.delimiter, "Delimiter")
class Iteration(ComponentBase, ABC):
component_name = "Iteration"
def get_start(self):
for cid in self._canvas.components.keys():
if self._canvas.get_component(cid)["obj"].component_name.lower() != "iterationitem":
continue
if self._canvas.get_component(cid)["parent_id"] == self._id:
return self._canvas.get_component(cid)
def _run(self, history, **kwargs):
return self.output(allow_partial=False)[1]

View File

@ -1,53 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class IterationItemParam(ComponentParamBase):
"""
Define the IterationItem component parameters.
"""
def check(self):
return True
class IterationItem(ComponentBase, ABC):
component_name = "IterationItem"
def __init__(self, canvas, id, param: ComponentParamBase):
super().__init__(canvas, id, param)
self._idx = 0
def _run(self, history, **kwargs):
parent = self.get_parent()
ans = parent.get_input()
ans = parent._param.delimiter.join(ans["content"]) if "content" in ans else ""
ans = [a.strip() for a in ans.split(parent._param.delimiter)]
if not ans:
self._idx = -1
return pd.DataFrame()
df = pd.DataFrame([{"content": ans[self._idx]}])
self._idx += 1
if self._idx >= len(ans):
self._idx = -1
return df
def end(self):
return self._idx == -1

View File

@ -1,130 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class Jin10Param(ComponentParamBase):
"""
Define the Jin10 component parameters.
"""
def __init__(self):
super().__init__()
self.type = "flash"
self.secret_key = "xxx"
self.flash_type = '1'
self.calendar_type = 'cj'
self.calendar_datatype = 'data'
self.symbols_type = 'GOODS'
self.symbols_datatype = 'symbols'
self.contain = ""
self.filter = ""
def check(self):
self.check_valid_value(self.type, "Type", ['flash', 'calendar', 'symbols', 'news'])
self.check_valid_value(self.flash_type, "Flash Type", ['1', '2', '3', '4', '5'])
self.check_valid_value(self.calendar_type, "Calendar Type", ['cj', 'qh', 'hk', 'us'])
self.check_valid_value(self.calendar_datatype, "Calendar DataType", ['data', 'event', 'holiday'])
self.check_valid_value(self.symbols_type, "Symbols Type", ['GOODS', 'FOREX', 'FUTURE', 'CRYPTO'])
self.check_valid_value(self.symbols_datatype, 'Symbols DataType', ['symbols', 'quotes'])
class Jin10(ComponentBase, ABC):
component_name = "Jin10"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Jin10.be_output("")
jin10_res = []
headers = {'secret-key': self._param.secret_key}
try:
if self._param.type == "flash":
params = {
'category': self._param.flash_type,
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/flash?category=' + self._param.flash_type,
headers=headers, data=json.dumps(params))
response = response.json()
for i in response['data']:
jin10_res.append({"content": i['data']['content']})
if self._param.type == "calendar":
params = {
'category': self._param.calendar_type
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/calendar/' + self._param.calendar_datatype + '?category=' + self._param.calendar_type,
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "symbols":
params = {
'type': self._param.symbols_type
}
if self._param.symbols_datatype == "quotes":
params['codes'] = 'BTCUSD'
response = requests.get(
url='https://open-data-api.jin10.com/data-api/' + self._param.symbols_datatype + '?type=' + self._param.symbols_type,
headers=headers, data=json.dumps(params))
response = response.json()
if self._param.symbols_datatype == "symbols":
for i in response['data']:
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Commodity Name'] = i['n']
i['Commodity Type'] = i['t']
del i['c'], i['e'], i['n'], i['t']
if self._param.symbols_datatype == "quotes":
for i in response['data']:
i['Selling Price'] = i['a']
i['Buying Price'] = i['b']
i['Commodity Code'] = i['c']
i['Stock Exchange'] = i['e']
i['Highest Price'] = i['h']
i['Yesterdays Closing Price'] = i['hc']
i['Lowest Price'] = i['l']
i['Opening Price'] = i['o']
i['Latest Price'] = i['p']
i['Market Quote Time'] = i['t']
del i['a'], i['b'], i['c'], i['e'], i['h'], i['hc'], i['l'], i['o'], i['p'], i['t']
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
if self._param.type == "news":
params = {
'contain': self._param.contain,
'filter': self._param.filter
}
response = requests.get(
url='https://open-data-api.jin10.com/data-api/news',
headers=headers, data=json.dumps(params))
response = response.json()
jin10_res.append({"content": pd.DataFrame(response['data']).to_markdown()})
except Exception as e:
return Jin10.be_output("**ERROR**: " + str(e))
if not jin10_res:
return Jin10.be_output("")
return pd.DataFrame(jin10_res)

View File

@ -1,65 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component import GenerateParam, Generate
class KeywordExtractParam(GenerateParam):
"""
Define the KeywordExtract component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 1
def check(self):
super().check()
self.check_positive_integer(self.top_n, "Top N")
def get_prompt(self):
self.prompt = """
- Role: You're a question analyzer.
- Requirements:
- Summarize user's question, and give top %s important keyword/phrase.
- Use comma as a delimiter to separate keywords/phrases.
- Answer format: (in language of user's question)
- keyword:
""" % self.top_n
return self.prompt
class KeywordExtract(Generate, ABC):
component_name = "KeywordExtract"
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": query}],
self._param.gen_conf())
ans = re.sub(r".*keyword:", "", ans).strip()
logging.debug(f"ans: {ans}")
return KeywordExtract.be_output(ans)
def debug(self, **kwargs):
return self._run([], **kwargs)

View File

@ -1,53 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from abc import ABC
from functools import partial
from agent.component.base import ComponentBase, ComponentParamBase
class MessageParam(ComponentParamBase):
"""
Define the Message component parameters.
"""
def __init__(self):
super().__init__()
self.messages = []
def check(self):
self.check_empty(self.messages, "[Message]")
return True
class Message(ComponentBase, ABC):
component_name = "Message"
def _run(self, history, **kwargs):
if kwargs.get("stream"):
return partial(self.stream_output)
return Message.be_output(random.choice(self._param.messages))
def stream_output(self):
res = None
if self._param.messages:
res = {"content": random.choice(self._param.messages)}
yield res
self.set_output(res)

View File

@ -1,69 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from Bio import Entrez
import re
import pandas as pd
import xml.etree.ElementTree as ET
from agent.component.base import ComponentBase, ComponentParamBase
class PubMedParam(ComponentParamBase):
"""
Define the PubMed component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 5
self.email = "A.N.Other@example.com"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
class PubMed(ComponentBase, ABC):
component_name = "PubMed"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return PubMed.be_output("")
try:
Entrez.email = self._param.email
pubmedids = Entrez.read(Entrez.esearch(db='pubmed', retmax=self._param.top_n, term=ans))['IdList']
pubmedcnt = ET.fromstring(re.sub(r'<(/?)b>|<(/?)i>', '', Entrez.efetch(db='pubmed', id=",".join(pubmedids),
retmode="xml").read().decode(
"utf-8")))
pubmed_res = [{"content": 'Title:' + child.find("MedlineCitation").find("Article").find(
"ArticleTitle").text + '\nUrl:<a href=" https://pubmed.ncbi.nlm.nih.gov/' + child.find(
"MedlineCitation").find("PMID").text + '">' + '</a>\n' + 'Abstract:' + (
child.find("MedlineCitation").find("Article").find("Abstract").find(
"AbstractText").text if child.find("MedlineCitation").find(
"Article").find("Abstract") else "No abstract available")} for child in
pubmedcnt.findall("PubmedArticle")]
except Exception as e:
return PubMed.be_output("**ERROR**: " + str(e))
if not pubmed_res:
return PubMed.be_output("")
df = pd.DataFrame(pubmed_res)
logging.debug(f"df: {df}")
return df

View File

@ -1,111 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class QWeatherParam(ComponentParamBase):
"""
Define the QWeather component parameters.
"""
def __init__(self):
super().__init__()
self.web_apikey = "xxx"
self.lang = "zh"
self.type = "weather"
self.user_type = 'free'
self.error_code = {
"204": "The request was successful, but the region you are querying does not have the data you need at this time.",
"400": "Request error, may contain incorrect request parameters or missing mandatory request parameters.",
"401": "Authentication fails, possibly using the wrong KEY, wrong digital signature, wrong type of KEY (e.g. using the SDK's KEY to access the Web API).",
"402": "Exceeded the number of accesses or the balance is not enough to support continued access to the service, you can recharge, upgrade the accesses or wait for the accesses to be reset.",
"403": "No access, may be the binding PackageName, BundleID, domain IP address is inconsistent, or the data that requires additional payment.",
"404": "The queried data or region does not exist.",
"429": "Exceeded the limited QPM (number of accesses per minute), please refer to the QPM description",
"500": "No response or timeout, interface service abnormality please contact us"
}
# Weather
self.time_period = 'now'
def check(self):
self.check_empty(self.web_apikey, "BaiduFanyi APPID")
self.check_valid_value(self.type, "Type", ["weather", "indices", "airquality"])
self.check_valid_value(self.user_type, "Free subscription or paid subscription", ["free", "paid"])
self.check_valid_value(self.lang, "Use language",
['zh', 'zh-hant', 'en', 'de', 'es', 'fr', 'it', 'ja', 'ko', 'ru', 'hi', 'th', 'ar', 'pt',
'bn', 'ms', 'nl', 'el', 'la', 'sv', 'id', 'pl', 'tr', 'cs', 'et', 'vi', 'fil', 'fi',
'he', 'is', 'nb'])
self.check_valid_value(self.time_period, "Time period", ['now', '3d', '7d', '10d', '15d', '30d'])
class QWeather(ComponentBase, ABC):
component_name = "QWeather"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join(ans["content"]) if "content" in ans else ""
if not ans:
return QWeather.be_output("")
try:
response = requests.get(
url="https://geoapi.qweather.com/v2/city/lookup?location=" + ans + "&key=" + self._param.web_apikey).json()
if response["code"] == "200":
location_id = response["location"][0]["id"]
else:
return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
base_url = "https://api.qweather.com/v7/" if self._param.user_type == 'paid' else "https://devapi.qweather.com/v7/"
if self._param.type == "weather":
url = base_url + "weather/" + self._param.time_period + "?location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
response = requests.get(url=url).json()
if response["code"] == "200":
if self._param.time_period == "now":
return QWeather.be_output(str(response["now"]))
else:
qweather_res = [{"content": str(i) + "\n"} for i in response["daily"]]
if not qweather_res:
return QWeather.be_output("")
df = pd.DataFrame(qweather_res)
return df
else:
return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
elif self._param.type == "indices":
url = base_url + "indices/1d?type=0&location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
response = requests.get(url=url).json()
if response["code"] == "200":
indices_res = response["daily"][0]["date"] + "\n" + "\n".join(
[i["name"] + ": " + i["category"] + ", " + i["text"] for i in response["daily"]])
return QWeather.be_output(indices_res)
else:
return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
elif self._param.type == "airquality":
url = base_url + "air/now?location=" + location_id + "&key=" + self._param.web_apikey + "&lang=" + self._param.lang
response = requests.get(url=url).json()
if response["code"] == "200":
return QWeather.be_output(str(response["now"]))
else:
return QWeather.be_output("**Error**" + self._param.error_code[response["code"]])
except Exception as e:
return QWeather.be_output("**Error**" + str(e))

View File

@ -1,83 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component import GenerateParam, Generate
from rag.utils import num_tokens_from_string, encoder
class RelevantParam(GenerateParam):
"""
Define the Relevant component parameters.
"""
def __init__(self):
super().__init__()
self.prompt = ""
self.yes = ""
self.no = ""
def check(self):
super().check()
self.check_empty(self.yes, "[Relevant] 'Yes'")
self.check_empty(self.no, "[Relevant] 'No'")
def get_prompt(self):
self.prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
No other words needed except 'yes' or 'no'.
"""
return self.prompt
class Relevant(Generate, ABC):
component_name = "Relevant"
def _run(self, history, **kwargs):
q = ""
for r, c in self._canvas.history[::-1]:
if r == "user":
q = c
break
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Relevant.be_output(self._param.no)
ans = "Documents: \n" + ans
ans = f"Question: {q}\n" + ans
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
if num_tokens_from_string(ans) >= chat_mdl.max_length - 4:
ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4])
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
self._param.gen_conf())
logging.debug(ans)
if ans.lower().find("yes") >= 0:
return Relevant.be_output(self._param.yes)
if ans.lower().find("no") >= 0:
return Relevant.be_output(self._param.no)
assert False, f"Relevant component got: {ans}"
def debug(self, **kwargs):
return self._run([], **kwargs)

View File

@ -1,108 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.app.tag import label_question
from rag.utils.tavily_conn import Tavily
class RetrievalParam(ComponentParamBase):
"""
Define the Retrieval component parameters.
"""
def __init__(self):
super().__init__()
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.5
self.top_n = 8
self.top_k = 1024
self.kb_ids = []
self.rerank_id = ""
self.empty_response = ""
self.tavily_api_key = ""
self.use_kg = False
def check(self):
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keyword similarity weight")
self.check_positive_number(self.top_n, "[Retrieval] Top N")
class Retrieval(ComponentBase, ABC):
component_name = "Retrieval"
def _run(self, history, **kwargs):
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
lines = query.split('\n')
user_queries = [line.split("USER:", 1)[1] for line in lines if line.startswith("USER:")]
query = user_queries[-1] if user_queries else ""
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
if not kbs:
return Retrieval.be_output("")
embd_nms = list(set([kb.embd_id for kb in kbs]))
assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
self._canvas.set_embedding_model(embd_nms[0])
rerank_mdl = None
if self._param.rerank_id:
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
1, self._param.top_n,
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(query, kbs))
if self._param.use_kg:
ck = settings.kg_retrievaler.retrieval(query,
[kbs[0].tenant_id],
self._param.kb_ids,
embd_mdl,
LLMBundle(kbs[0].tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
if self._param.tavily_api_key:
tav = Tavily(self._param.tavily_api_key)
tav_res = tav.retrieve_chunks(query)
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if not kbinfos["chunks"]:
df = Retrieval.be_output("")
if self._param.empty_response and self._param.empty_response.strip():
df["empty_response"] = self._param.empty_response
return df
df = pd.DataFrame(kbinfos["chunks"])
df["content"] = df["content_with_weight"]
del df["content_with_weight"]
logging.debug("{} {}".format(query, df))
return df

View File

@ -1,94 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component import GenerateParam, Generate
from rag.prompts import full_question
class RewriteQuestionParam(GenerateParam):
"""
Define the QuestionRewrite component parameters.
"""
def __init__(self):
super().__init__()
self.temperature = 0.9
self.prompt = ""
self.language = ""
def check(self):
super().check()
class RewriteQuestion(Generate, ABC):
component_name = "RewriteQuestion"
def _run(self, history, **kwargs):
hist = self._canvas.get_history(self._param.message_history_window_size)
query = self.get_input()
query = str(query["content"][0]) if "content" in query else ""
messages = [h for h in hist if h["role"]!="system"]
if messages[-1]["role"] != "user":
messages.append({"role": "user", "content": query})
ans = full_question(self._canvas.get_tenant_id(), self._param.llm_id, messages, self.gen_lang(self._param.language))
self._canvas.history.pop()
self._canvas.history.append(("user", ans))
return RewriteQuestion.be_output(ans)
@staticmethod
def gen_lang(language):
# convert code lang to language word for the prompt
language_dict = {'af': 'Afrikaans', 'ak': 'Akan', 'sq': 'Albanian', 'ws': 'Samoan', 'am': 'Amharic',
'ar': 'Arabic', 'hy': 'Armenian', 'az': 'Azerbaijani', 'eu': 'Basque', 'be': 'Belarusian',
'bem': 'Bemba', 'bn': 'Bengali', 'bh': 'Bihari',
'xx-bork': 'Bork', 'bs': 'Bosnian', 'br': 'Breton', 'bg': 'Bulgarian', 'bt': 'Bhutani',
'km': 'Cambodian', 'ca': 'Catalan', 'chr': 'Cherokee', 'ny': 'Chichewa', 'zh-cn': 'Chinese',
'zh-tw': 'Chinese', 'co': 'Corsican',
'hr': 'Croatian', 'cs': 'Czech', 'da': 'Danish', 'nl': 'Dutch', 'xx-elmer': 'Elmer',
'en': 'English', 'eo': 'Esperanto', 'et': 'Estonian', 'ee': 'Ewe', 'fo': 'Faroese',
'tl': 'Filipino', 'fi': 'Finnish', 'fr': 'French',
'fy': 'Frisian', 'gaa': 'Ga', 'gl': 'Galician', 'ka': 'Georgian', 'de': 'German',
'el': 'Greek', 'kl': 'Greenlandic', 'gn': 'Guarani', 'gu': 'Gujarati', 'xx-hacker': 'Hacker',
'ht': 'Haitian Creole', 'ha': 'Hausa', 'haw': 'Hawaiian',
'iw': 'Hebrew', 'hi': 'Hindi', 'hu': 'Hungarian', 'is': 'Icelandic', 'ig': 'Igbo',
'id': 'Indonesian', 'ia': 'Interlingua', 'ga': 'Irish', 'it': 'Italian', 'ja': 'Japanese',
'jw': 'Javanese', 'kn': 'Kannada', 'kk': 'Kazakh', 'rw': 'Kinyarwanda',
'rn': 'Kirundi', 'xx-klingon': 'Klingon', 'kg': 'Kongo', 'ko': 'Korean', 'kri': 'Krio',
'ku': 'Kurdish', 'ckb': 'Kurdish (Sorani)', 'ky': 'Kyrgyz', 'lo': 'Laothian', 'la': 'Latin',
'lv': 'Latvian', 'ln': 'Lingala', 'lt': 'Lithuanian',
'loz': 'Lozi', 'lg': 'Luganda', 'ach': 'Luo', 'mk': 'Macedonian', 'mg': 'Malagasy',
'ms': 'Malay', 'ml': 'Malayalam', 'mt': 'Maltese', 'mv': 'Maldivian', 'mi': 'Maori',
'mr': 'Marathi', 'mfe': 'Mauritian Creole', 'mo': 'Moldavian', 'mn': 'Mongolian',
'sr-me': 'Montenegrin', 'my': 'Burmese', 'ne': 'Nepali', 'pcm': 'Nigerian Pidgin',
'nso': 'Northern Sotho', 'no': 'Norwegian', 'nn': 'Norwegian Nynorsk', 'oc': 'Occitan',
'or': 'Oriya', 'om': 'Oromo', 'ps': 'Pashto', 'fa': 'Persian',
'xx-pirate': 'Pirate', 'pl': 'Polish', 'pt': 'Portuguese', 'pt-br': 'Portuguese (Brazilian)',
'pt-pt': 'Portuguese (Portugal)', 'pa': 'Punjabi', 'qu': 'Quechua', 'ro': 'Romanian',
'rm': 'Romansh', 'nyn': 'Runyankole', 'ru': 'Russian', 'gd': 'Scots Gaelic',
'sr': 'Serbian', 'sh': 'Serbo-Croatian', 'st': 'Sesotho', 'tn': 'Setswana',
'crs': 'Seychellois Creole', 'sn': 'Shona', 'sd': 'Sindhi', 'si': 'Sinhalese', 'sk': 'Slovak',
'sl': 'Slovenian', 'so': 'Somali', 'es': 'Spanish', 'es-419': 'Spanish (Latin America)',
'su': 'Sundanese',
'sw': 'Swahili', 'sv': 'Swedish', 'tg': 'Tajik', 'ta': 'Tamil', 'tt': 'Tatar', 'te': 'Telugu',
'th': 'Thai', 'ti': 'Tigrinya', 'to': 'Tongan', 'lua': 'Tshiluba', 'tum': 'Tumbuka',
'tr': 'Turkish', 'tk': 'Turkmen', 'tw': 'Twi',
'ug': 'Uyghur', 'uk': 'Ukrainian', 'ur': 'Urdu', 'uz': 'Uzbek', 'vu': 'Vanuatu',
'vi': 'Vietnamese', 'cy': 'Welsh', 'wo': 'Wolof', 'xh': 'Xhosa', 'yi': 'Yiddish',
'yo': 'Yoruba', 'zu': 'Zulu'}
if language in language_dict:
return language_dict[language]
else:
return ""

View File

@ -1,131 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
from agent.component.base import ComponentBase, ComponentParamBase
class SwitchParam(ComponentParamBase):
"""
Define the Switch component parameters.
"""
def __init__(self):
super().__init__()
"""
{
"logical_operator" : "and | or"
"items" : [
{"cpn_id": "categorize:0", "operator": "contains", "value": ""},
{"cpn_id": "categorize:0", "operator": "contains", "value": ""},...],
"to": ""
}
"""
self.conditions = []
self.end_cpn_id = "answer:0"
self.operators = ['contains', 'not contains', 'start with', 'end with', 'empty', 'not empty', '=', '', '>',
'<', '', '']
def check(self):
self.check_empty(self.conditions, "[Switch] conditions")
for cond in self.conditions:
if not cond["to"]:
raise ValueError("[Switch] 'To' can not be empty!")
class Switch(ComponentBase, ABC):
component_name = "Switch"
def get_dependent_components(self):
res = []
for cond in self._param.conditions:
for item in cond["items"]:
if not item["cpn_id"]:
continue
if item["cpn_id"].find("begin") >= 0:
continue
cid = item["cpn_id"].split("@")[0]
res.append(cid)
return list(set(res))
def _run(self, history, **kwargs):
for cond in self._param.conditions:
res = []
for item in cond["items"]:
if not item["cpn_id"]:
continue
cid = item["cpn_id"].split("@")[0]
if item["cpn_id"].find("@") > 0:
cpn_id, key = item["cpn_id"].split("@")
for p in self._canvas.get_component(cid)["obj"]._param.query:
if p["key"] == key:
res.append(self.process_operator(p.get("value",""), item["operator"], item.get("value", "")))
break
else:
out = self._canvas.get_component(cid)["obj"].output()[1]
cpn_input = "" if "content" not in out.columns else " ".join([str(s) for s in out["content"]])
res.append(self.process_operator(cpn_input, item["operator"], item.get("value", "")))
if cond["logical_operator"] != "and" and any(res):
return Switch.be_output(cond["to"])
if all(res):
return Switch.be_output(cond["to"])
return Switch.be_output(self._param.end_cpn_id)
def process_operator(self, input: str, operator: str, value: str) -> bool:
if not isinstance(input, str) or not isinstance(value, str):
raise ValueError('Invalid input or value type: string')
if operator == "contains":
return True if value.lower() in input.lower() else False
elif operator == "not contains":
return True if value.lower() not in input.lower() else False
elif operator == "start with":
return True if input.lower().startswith(value.lower()) else False
elif operator == "end with":
return True if input.lower().endswith(value.lower()) else False
elif operator == "empty":
return True if not input else False
elif operator == "not empty":
return True if input else False
elif operator == "=":
return True if input == value else False
elif operator == "":
return True if input != value else False
elif operator == ">":
try:
return True if float(input) > float(value) else False
except Exception:
return True if input > value else False
elif operator == "<":
try:
return True if float(input) < float(value) else False
except Exception:
return True if input < value else False
elif operator == "":
try:
return True if float(input) >= float(value) else False
except Exception:
return True if input >= value else False
elif operator == "":
try:
return True if float(input) <= float(value) else False
except Exception:
return True if input <= value else False
raise ValueError('Not supported operator' + operator)

View File

@ -1,136 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import re
from agent.component.base import ComponentBase, ComponentParamBase
from jinja2 import Template as Jinja2Template
class TemplateParam(ComponentParamBase):
"""
Define the Generate component parameters.
"""
def __init__(self):
super().__init__()
self.content = ""
self.parameters = []
def check(self):
self.check_empty(self.content, "[Template] Content")
return True
class Template(ComponentBase):
component_name = "Template"
def get_dependent_components(self):
inputs = self.get_input_elements()
cpnts = set([i["key"] for i in inputs if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
return list(cpnts)
def get_input_elements(self):
key_set = set([])
res = []
for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.content, flags=re.IGNORECASE):
cpn_id = r.group(1)
if cpn_id in key_set:
continue
if cpn_id.lower().find("begin@") == 0:
cpn_id, key = cpn_id.split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] != key:
continue
res.append({"key": r.group(1), "name": p["name"]})
key_set.add(r.group(1))
continue
cpn_nm = self._canvas.get_component_name(cpn_id)
if not cpn_nm:
continue
res.append({"key": cpn_id, "name": cpn_nm})
key_set.add(cpn_id)
return res
def _run(self, history, **kwargs):
content = self._param.content
self._param.inputs = []
for para in self.get_input_elements():
if para["key"].lower().find("begin@") == 0:
cpn_id, key = para["key"].split("@")
for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
if p["key"] == key:
value = p.get("value", "")
self.make_kwargs(para, kwargs, value)
break
else:
assert False, f"Can't find parameter '{key}' for {cpn_id}"
continue
component_id = para["key"]
cpn = self._canvas.get_component(component_id)["obj"]
if cpn.component_name.lower() == "answer":
hist = self._canvas.get_history(1)
if hist:
hist = hist[0]["content"]
else:
hist = ""
self.make_kwargs(para, kwargs, hist)
continue
_, out = cpn.output(allow_partial=False)
result = ""
if "content" in out.columns:
result = "\n".join(
[o if isinstance(o, str) else str(o) for o in out["content"]]
)
self.make_kwargs(para, kwargs, result)
template = Jinja2Template(content)
try:
content = template.render(kwargs)
except Exception:
pass
for n, v in kwargs.items():
try:
v = json.dumps(v, ensure_ascii=False)
except Exception:
pass
content = re.sub(
r"\{%s\}" % re.escape(n), v, content
)
content = re.sub(
r"(\\\"|\")", "", content
)
content = re.sub(
r"(#+)", r" \1 ", content
)
return Template.be_output(content)
def make_kwargs(self, para, kwargs, value):
self._param.inputs.append(
{"component_id": para["key"], "content": value}
)
try:
value = json.loads(value)
except Exception:
pass
kwargs[para["key"]] = value

View File

@ -1,72 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from abc import ABC
import pandas as pd
import time
import requests
from agent.component.base import ComponentBase, ComponentParamBase
class TuShareParam(ComponentParamBase):
"""
Define the TuShare component parameters.
"""
def __init__(self):
super().__init__()
self.token = "xxx"
self.src = "eastmoney"
self.start_date = "2024-01-01 09:00:00"
self.end_date = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
self.keyword = ""
def check(self):
self.check_valid_value(self.src, "Quick News Source",
["sina", "wallstreetcn", "10jqka", "eastmoney", "yuncaijing", "fenghuang", "jinrongjie"])
class TuShare(ComponentBase, ABC):
component_name = "TuShare"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return TuShare.be_output("")
try:
tus_res = []
params = {
"api_name": "news",
"token": self._param.token,
"params": {"src": self._param.src, "start_date": self._param.start_date,
"end_date": self._param.end_date}
}
response = requests.post(url="http://api.tushare.pro", data=json.dumps(params).encode('utf-8'))
response = response.json()
if response['code'] != 0:
return TuShare.be_output(response['msg'])
df = pd.DataFrame(response['data']['items'])
df.columns = response['data']['fields']
tus_res.append({"content": (df[df['content'].str.contains(self._param.keyword, case=False)]).to_markdown()})
except Exception as e:
return TuShare.be_output("**ERROR**: " + str(e))
if not tus_res:
return TuShare.be_output("")
return pd.DataFrame(tus_res)

View File

@ -1,80 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC
import pandas as pd
import pywencai
from agent.component.base import ComponentBase, ComponentParamBase
class WenCaiParam(ComponentParamBase):
"""
Define the WenCai component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.query_type = "stock"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.query_type, "Query type",
['stock', 'zhishu', 'fund', 'hkstock', 'usstock', 'threeboard', 'conbond', 'insurance',
'futures', 'lccp',
'foreign_exchange'])
class WenCai(ComponentBase, ABC):
component_name = "WenCai"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = ",".join(ans["content"]) if "content" in ans else ""
if not ans:
return WenCai.be_output("")
try:
wencai_res = []
res = pywencai.get(query=ans, query_type=self._param.query_type, perpage=self._param.top_n)
if isinstance(res, pd.DataFrame):
wencai_res.append({"content": res.to_markdown()})
if isinstance(res, dict):
for item in res.items():
if isinstance(item[1], list):
wencai_res.append({"content": item[0] + "\n" + pd.DataFrame(item[1]).to_markdown()})
continue
if isinstance(item[1], str):
wencai_res.append({"content": item[0] + "\n" + item[1]})
continue
if isinstance(item[1], dict):
if "meta" in item[1].keys():
continue
wencai_res.append({"content": pd.DataFrame.from_dict(item[1], orient='index').to_markdown()})
continue
if isinstance(item[1], pd.DataFrame):
if "image_url" in item[1].columns:
continue
wencai_res.append({"content": item[1].to_markdown()})
continue
wencai_res.append({"content": item[0] + "\n" + str(item[1])})
except Exception as e:
return WenCai.be_output("**ERROR**: " + str(e))
if not wencai_res:
return WenCai.be_output("")
return pd.DataFrame(wencai_res)

View File

@ -1,67 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import wikipedia
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
class WikipediaParam(ComponentParamBase):
"""
Define the Wikipedia component parameters.
"""
def __init__(self):
super().__init__()
self.top_n = 10
self.language = "en"
def check(self):
self.check_positive_integer(self.top_n, "Top N")
self.check_valid_value(self.language, "Wikipedia languages",
['af', 'pl', 'ar', 'ast', 'az', 'bg', 'nan', 'bn', 'be', 'ca', 'cs', 'cy', 'da', 'de',
'et', 'el', 'en', 'es', 'eo', 'eu', 'fa', 'fr', 'gl', 'ko', 'hy', 'hi', 'hr', 'id',
'it', 'he', 'ka', 'lld', 'la', 'lv', 'lt', 'hu', 'mk', 'arz', 'ms', 'min', 'my', 'nl',
'ja', 'nb', 'nn', 'ce', 'uz', 'pt', 'kk', 'ro', 'ru', 'ceb', 'sk', 'sl', 'sr', 'sh',
'fi', 'sv', 'ta', 'tt', 'th', 'tg', 'azb', 'tr', 'uk', 'ur', 'vi', 'war', 'zh', 'yue'])
class Wikipedia(ComponentBase, ABC):
component_name = "Wikipedia"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = " - ".join(ans["content"]) if "content" in ans else ""
if not ans:
return Wikipedia.be_output("")
try:
wiki_res = []
wikipedia.set_lang(self._param.language)
wiki_engine = wikipedia
for wiki_key in wiki_engine.search(ans, results=self._param.top_n):
page = wiki_engine.page(title=wiki_key, auto_suggest=False)
wiki_res.append({"content": '<a href="' + page.url + '">' + page.title + '</a> ' + page.summary})
except Exception as e:
return Wikipedia.be_output("**ERROR**: " + str(e))
if not wiki_res:
return Wikipedia.be_output("")
df = pd.DataFrame(wiki_res)
logging.debug(f"df: {df}")
return df

View File

@ -1,84 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from abc import ABC
import pandas as pd
from agent.component.base import ComponentBase, ComponentParamBase
import yfinance as yf
class YahooFinanceParam(ComponentParamBase):
"""
Define the YahooFinance component parameters.
"""
def __init__(self):
super().__init__()
self.info = True
self.history = False
self.count = False
self.financials = False
self.income_stmt = False
self.balance_sheet = False
self.cash_flow_statement = False
self.news = True
def check(self):
self.check_boolean(self.info, "get all stock info")
self.check_boolean(self.history, "get historical market data")
self.check_boolean(self.count, "show share count")
self.check_boolean(self.financials, "show financials")
self.check_boolean(self.income_stmt, "income statement")
self.check_boolean(self.balance_sheet, "balance sheet")
self.check_boolean(self.cash_flow_statement, "cash flow statement")
self.check_boolean(self.news, "show news")
class YahooFinance(ComponentBase, ABC):
component_name = "YahooFinance"
def _run(self, history, **kwargs):
ans = self.get_input()
ans = "".join(ans["content"]) if "content" in ans else ""
if not ans:
return YahooFinance.be_output("")
yohoo_res = []
try:
msft = yf.Ticker(ans)
if self._param.info:
yohoo_res.append({"content": "info:\n" + pd.Series(msft.info).to_markdown() + "\n"})
if self._param.history:
yohoo_res.append({"content": "history:\n" + msft.history().to_markdown() + "\n"})
if self._param.financials:
yohoo_res.append({"content": "calendar:\n" + pd.DataFrame(msft.calendar).to_markdown() + "\n"})
if self._param.balance_sheet:
yohoo_res.append({"content": "balance sheet:\n" + msft.balance_sheet.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly balance sheet:\n" + msft.quarterly_balance_sheet.to_markdown() + "\n"})
if self._param.cash_flow_statement:
yohoo_res.append({"content": "cash flow statement:\n" + msft.cashflow.to_markdown() + "\n"})
yohoo_res.append(
{"content": "quarterly cash flow statement:\n" + msft.quarterly_cashflow.to_markdown() + "\n"})
if self._param.news:
yohoo_res.append({"content": "news:\n" + pd.DataFrame(msft.news).to_markdown() + "\n"})
except Exception:
logging.exception("YahooFinance got exception")
if not yohoo_res:
return YahooFinance.be_output("")
return pd.DataFrame(yohoo_res)

View File

@ -1,18 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
FLOAT_ZERO = 1e-8
PARAM_MAXDEPTH = 5

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,49 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import os
from functools import partial
from agent.canvas import Canvas
from agent.settings import DEBUG
if __name__ == '__main__':
parser = argparse.ArgumentParser()
dsl_default_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"dsl_examples",
"retrieval_and_generate.json",
)
parser.add_argument('-s', '--dsl', default=dsl_default_path, help="input dsl", action='store', required=True)
parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
parser.add_argument('-m', '--stream', default=False, help="Stream output", action='store_true', required=False)
args = parser.parse_args()
canvas = Canvas(open(args.dsl, "r").read(), args.tenant_id)
while True:
ans = canvas.run(stream=args.stream)
print("==================== Bot =====================\n> ", end='')
if args.stream and isinstance(ans, partial):
cont = ""
for an in ans():
print(an["content"][len(cont):], end='', flush=True)
cont = an["content"]
else:
print(ans["content"])
if DEBUG:
print(canvas.path)
question = input("\n==================== User =====================\n> ")
canvas.add_user_input(question)

View File

@ -1,129 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["baidu:0"],
"upstream": ["begin", "message:0","message:1"]
},
"baidu:0": {
"obj": {
"component_name": "Baidu",
"params": {}
},
"downstream": ["generate:0"],
"upstream": ["answer:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the user's question based on what Baidu searched. First, please output the user's question and the content searched by Baidu, and then answer yes, no, or i don't know.Here is the user's question:{user_input}The above is the user's question.Here is what Baidu searched for:{baidu}The above is the content searched by Baidu.",
"temperature": 0.2
},
"parameters": [
{
"component_id": "answer:0",
"id": "69415446-49bf-4d4b-8ec9-ac86066f7709",
"key": "user_input"
},
{
"component_id": "baidu:0",
"id": "83363c2a-00a8-402f-a45c-ddc4097d7d8b",
"key": "baidu"
}
]
},
"downstream": ["switch:0"],
"upstream": ["baidu:0"]
},
"switch:0": {
"obj": {
"component_name": "Switch",
"params": {
"conditions": [
{
"logical_operator" : "or",
"items" : [
{"cpn_id": "generate:0", "operator": "contains", "value": "yes"},
{"cpn_id": "generate:0", "operator": "contains", "value": "yeah"}
],
"to": "message:0"
},
{
"logical_operator" : "and",
"items" : [
{"cpn_id": "generate:0", "operator": "contains", "value": "no"},
{"cpn_id": "generate:0", "operator": "not contains", "value": "yes"},
{"cpn_id": "generate:0", "operator": "not contains", "value": "know"}
],
"to": "message:1"
},
{
"logical_operator" : "",
"items" : [
{"cpn_id": "generate:0", "operator": "contains", "value": "know"}
],
"to": "message:2"
}
],
"end_cpn_id": "answer:0"
}
},
"downstream": ["message:0","message:1"],
"upstream": ["generate:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"messages": ["YES YES YES YES YES YES YES YES YES YES YES YES"]
}
},
"upstream": ["switch:0"],
"downstream": ["answer:0"]
},
"message:1": {
"obj": {
"component_name": "Message",
"params": {
"messages": ["NO NO NO NO NO NO NO NO NO NO NO NO NO NO"]
}
},
"upstream": ["switch:0"],
"downstream": ["answer:0"]
},
"message:2": {
"obj": {
"component_name": "Message",
"params": {
"messages": ["I DON'T KNOW---------------------------"]
}
},
"upstream": ["switch:0"],
"downstream": ["answer:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -1,73 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
"to": "message:0"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "message:1"
}
}
}
},
"downstream": ["message:0","message:1"],
"upstream": ["answer:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
},
"message:1": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -1,113 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
"to": "concentrator:0"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "concentrator:1"
}
}
}
},
"downstream": ["concentrator:0","concentrator:1"],
"upstream": ["answer:0"]
},
"concentrator:0": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:0"],
"upstream": ["categorize:0"]
},
"concentrator:1": {
"obj": {
"component_name": "Concentrator",
"params": {}
},
"downstream": ["message:1_0","message:1_1","message:1_2"],
"upstream": ["categorize:0"]
},
"message:0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 0_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:0"]
},
"message:1_0": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_0!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_1": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_1!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
},
"message:1_2": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"Message 1_2!!!!!!!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["concentrator:1"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -1,157 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi! How can I help you?"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin", "generate:0", "generate:casual", "generate:answer", "generate:complain", "generate:ask_contact", "message:get_contact"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?\nException: Can't connect to ES cluster\nHow to build the RAGFlow image from scratch",
"to": "retrieval:0"
},
"casual": {
"description": "The question is not about the product usage, appearance and how it works. Just casual chat.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "generate:casual"
},
"complain": {
"description": "Complain even curse about the product or service you provide. But the comment is not specific enough.",
"examples": "How bad is it.\nIt's really sucks.\nDamn, for God's sake, can it be more steady?\nShit, I just can't use this shit.\nI can't stand it anymore.",
"to": "generate:complain"
},
"answer": {
"description": "This answer provide a specific contact information, like e-mail, phone number, wechat number, line number, twitter, discord, etc,.",
"examples": "My phone number is 203921\nkevinhu.hk@gmail.com\nThis is my discord number: johndowson_29384",
"to": "message:get_contact"
}
},
"message_history_window_size": 8
}
},
"downstream": ["retrieval:0", "generate:casual", "generate:complain", "message:get_contact"],
"upstream": ["answer:0"]
},
"generate:casual": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are a customer support. But the customer wants to have a casual chat with you instead of consulting about the product. Be nice, funny, enthusiasm and concern.",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
},
"generate:complain": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are a customer support. the Customers complain even curse about the products but not specific enough. You need to ask him/her what's the specific problem with the product. Be nice, patient and concern to soothe your customers emotions at first place.",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["relevant:0"],
"upstream": ["categorize:0"]
},
"relevant:0": {
"obj": {
"component_name": "Relevant",
"params": {
"llm_id": "deepseek-chat",
"temperature": 0.02,
"yes": "generate:answer",
"no": "generate:ask_contact"
}
},
"downstream": ["generate:answer", "generate:ask_contact"],
"upstream": ["retrieval:0"]
},
"generate:answer": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
"temperature": 0.02
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
},
"generate:ask_contact": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are a customer support. But you can't answer to customers' question. You need to request their contact like E-mail, phone number, Wechat number, LINE number, twitter, discord, etc,. Product experts will contact them later. Please do not ask the same question twice.",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
},
"message:get_contact": {
"obj":{
"component_name": "Message",
"params": {
"messages": [
"Okay, I've already write this down. What else I can do for you?",
"Get it. What else I can do for you?",
"Thanks for your trust! Our expert will contact ASAP. So, anything else I can do for you?",
"Thanks! So, anything else I can do for you?"
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -1,43 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["exesql:0"],
"upstream": ["begin", "exesql:0"]
},
"exesql:0": {
"obj": {
"component_name": "ExeSQL",
"params": {
"database": "rag_flow",
"username": "root",
"host": "mysql",
"port": 3306,
"password": "infini_rag_flow",
"top_n": 3
}
},
"downstream": ["answer:0"],
"upstream": ["answer:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -1,210 +0,0 @@
{
"components": {
"begin": {
"obj": {
"component_name": "Begin",
"params": {
"prologue": "您好我是AGI方向的猎头了解到您是这方面的大佬然后冒昧的就联系到您。这边有个机会想和您分享RAGFlow正在招聘您这个岗位的资深的工程师不知道您那边是不是感兴趣"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin", "message:reject"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"about_job": {
"description": "该问题关于职位本身或公司的信息。",
"examples": "什么岗位?\n汇报对象是谁?\n公司多少人\n公司有啥产品\n具体工作内容是啥\n地点哪里\n双休吗",
"to": "retrieval:0"
},
"casual": {
"description": "该问题不关于职位本身或公司的信息,属于闲聊。",
"examples": "你好\n好久不见\n你男的女的\n你是猴子派来的救兵吗\n上午开会了?\n你叫啥\n最近市场如何?生意好做吗?",
"to": "generate:casual"
},
"interested": {
"description": "该回答表示他对于该职位感兴趣。",
"examples": "嗯\n说吧\n说说看\n还好吧\n是的\n哦\nyes\n具体说说",
"to": "message:introduction"
},
"answer": {
"description": "该回答表示他对于该职位不感兴趣,或感觉受到骚扰。",
"examples": "不需要\n不感兴趣\n暂时不看\n不要\nno\n我已经不干这个了\n我不是这个方向的",
"to": "message:reject"
}
}
}
},
"downstream": [
"message:introduction",
"generate:casual",
"message:reject",
"retrieval:0"
],
"upstream": ["answer:0"]
},
"message:introduction": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"我简单介绍以下:\nRAGFlow 是一款基于深度文档理解构建的开源 RAGRetrieval-Augmented Generation引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程结合大语言模型LLM针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。https://github.com/infiniflow/ragflow\n您那边还有什么要了解的"
]
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:0"]
},
"answer:1": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:1"],
"upstream": [
"message:introduction",
"generate:aboutJob",
"generate:casual",
"generate:get_wechat",
"generate:nowechat"
]
},
"categorize:1": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"about_job": {
"description": "该问题关于职位本身或公司的信息。",
"examples": "什么岗位?\n汇报对象是谁?\n公司多少人\n公司有啥产品\n具体工作内容是啥\n地点哪里\n双休吗",
"to": "retrieval:0"
},
"casual": {
"description": "该问题不关于职位本身或公司的信息,属于闲聊。",
"examples": "你好\n好久不见\n你男的女的\n你是猴子派来的救兵吗\n上午开会了?\n你叫啥\n最近市场如何?生意好做吗?",
"to": "generate:casual"
},
"wechat": {
"description": "该回答表示他愿意加微信,或者已经报了微信号。",
"examples": "嗯\n可以\n是的\n哦\nyes\n15002333453\nwindblow_2231",
"to": "generate:get_wechat"
},
"giveup": {
"description": "该回答表示他不愿意加微信。",
"examples": "不需要\n不感兴趣\n暂时不看\n不要\nno\n不方便\n不知道还要加我微信",
"to": "generate:nowechat"
}
},
"message_history_window_size": 8
}
},
"downstream": [
"retrieval:0",
"generate:casual",
"generate:get_wechat",
"generate:nowechat"
],
"upstream": ["answer:1"]
},
"generate:casual": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头现在候选人的聊了和职位无关的话题请耐心的回应候选人并将话题往该AGI的职位上带最好能要到候选人微信号以便后面保持联系。",
"temperature": 0.9,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:0", "categorize:1"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["generate:aboutJob"],
"upstream": ["categorize:0", "categorize:1"]
},
"generate:aboutJob": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头候选人问了有关职位或公司的问题你根据以下职位信息回答。如果职位信息中不包含候选人的问题就回答不清楚、不知道、有待确认等。回答完后引导候选人加微信号\n - 方便加一下微信吗我把JD发您看看\n - 微信号多少我把详细职位JD发您\n 职位信息如下:\n {input}\n 职位信息如上。",
"temperature": 0.02
}
},
"downstream": ["answer:1"],
"upstream": ["retrieval:0"]
},
"generate:get_wechat": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头候选人表示不反感加微信如果对方已经报了微信号表示感谢和信任并表示马上会加上如果没有则问对方微信号多少。你的微信号是weixin_kevinE-mail是kkk@ragflow.com。说话不要重复。不要总是您好。",
"temperature": 0.1,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:1"]
},
"generate:nowechat": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "你是AGI方向的猎头当你提出加微信时对方表示拒绝。你需要耐心礼貌的回应候选人表示对于保护隐私信息给予理解也可以询问他对该职位的看法和顾虑。并在恰当的时机再次询问微信联系方式。也可以鼓励候选人主动与你取得联系。你的微信号是weixin_kevinE-mail是kkk@ragflow.com。说话不要重复。不要总是您好。",
"temperature": 0.1,
"message_history_window_size": 12,
"cite": false
}
},
"downstream": ["answer:1"],
"upstream": ["categorize:1"]
},
"message:reject": {
"obj": {
"component_name": "Message",
"params": {
"messages": [
"好的,祝您生活愉快,工作顺利。",
"哦,好的,感谢您宝贵的时间!"
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -1,39 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there! Please enter the text you want to translate in format like: 'text you want to translate' => target language. For an example: 您好! => English"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["generate:0"],
"upstream": ["begin", "generate:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an professional interpreter.\n- Role: an professional interpreter.\n- Input format: content need to be translated => target language. \n- Answer format: => translated content in target language. \n- Examples:\n - user: 您好! => English. assistant: => How are you doing!\n - user: You look good today. => Japanese. assistant: => 今日は調子がいいですね 。\n",
"temperature": 0.5
}
},
"downstream": ["answer:0"],
"upstream": ["answer:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -1,39 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there! Please enter the text you want to translate in format like: 'text you want to translate' => target language. For an example: 您好! => English"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["generate:0"],
"upstream": ["begin", "generate:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an professional interpreter.\n- Role: an professional interpreter.\n- Input format: content need to be translated => target language. \n- Answer format: => translated content in target language. \n- Examples:\n - user: 您好! => English. assistant: => How are you doing!\n - user: You look good today. => Japanese. assistant: => 今日は調子がいいですね 。\n",
"temperature": 0.5
}
},
"downstream": ["answer:0"],
"upstream": ["answer:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -1,62 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["keyword:0"],
"upstream": ["begin"]
},
"keyword:0": {
"obj": {
"component_name": "KeywordExtract",
"params": {
"llm_id": "deepseek-chat",
"prompt": "- Role: You're a question analyzer.\n - Requirements:\n - Summarize user's question, and give top %s important keyword/phrase.\n - Use comma as a delimiter to separate keywords/phrases.\n - Answer format: (in language of user's question)\n - keyword: ",
"temperature": 0.2,
"top_n": 1
}
},
"downstream": ["wikipedia:0"],
"upstream": ["answer:0"]
},
"wikipedia:0": {
"obj":{
"component_name": "Wikipedia",
"params": {
"top_n": 10
}
},
"downstream": ["generate:0"],
"upstream": ["keyword:0"]
},
"generate:1": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the question based on content from Wikipedia. When the answer from Wikipedia is incomplete, you need to output the URL link of the corresponding content as well. When all the content searched from Wikipedia is irrelevant to the question, your answer must include the sentence, \"The answer you are looking for is not found in the Wikipedia!\". Answers need to consider chat history.\n The content of Wikipedia is as follows:\n {input}\n The above is the content of Wikipedia.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["wikipedia:0"]
}
},
"history": [],
"path": [],
"messages": [],
"reference": {},
"answer": []
}

View File

@ -1,54 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval:0"],
"upstream": ["begin", "generate:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["generate:0"],
"upstream": ["answer:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {input}\n The above is the knowledge base.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["retrieval:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -1,88 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["categorize:0"],
"upstream": ["begin", "generate:0", "switch:0"]
},
"categorize:0": {
"obj": {
"component_name": "Categorize",
"params": {
"llm_id": "deepseek-chat",
"category_description": {
"product_related": {
"description": "The question is about the product usage, appearance and how it works.",
"examples": "Why it always beaming?\nHow to install it onto the wall?\nIt leaks, what to do?",
"to": "retrieval:0"
},
"others": {
"description": "The question is not about the product usage, appearance and how it works.",
"examples": "How are you doing?\nWhat is your name?\nAre you a robot?\nWhat's the weather?\nWill it rain?",
"to": "message:0"
}
}
}
},
"downstream": ["retrieval:0", "message:0"],
"upstream": ["answer:0"]
},
"message:0": {
"obj":{
"component_name": "Message",
"params": {
"messages": [
"Sorry, I don't know. I'm an AI bot."
]
}
},
"downstream": ["answer:0"],
"upstream": ["categorize:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"]
}
},
"downstream": ["generate:0"],
"upstream": ["switch:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n Here is the knowledge base:\n {input}\n The above is the knowledge base.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["retrieval:0"]
}
},
"history": [],
"messages": [],
"reference": {},
"path": [],
"answer": []
}

View File

@ -1,82 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval:0"],
"upstream": ["begin", "generate:0", "switch:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"],
"empty_response": "Sorry, knowledge base has noting related information."
}
},
"downstream": ["relevant:0"],
"upstream": ["answer:0"]
},
"relevant:0": {
"obj": {
"component_name": "Relevant",
"params": {
"llm_id": "deepseek-chat",
"temperature": 0.02,
"yes": "generate:0",
"no": "message:0"
}
},
"downstream": ["message:0", "generate:0"],
"upstream": ["retrieval:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
},
"message:0": {
"obj":{
"component_name": "Message",
"params": {
"messages": [
"Sorry, I don't know. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?",
"I'm an AI bot and not quite sure about this question. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?",
"Can't find answer in my knowledge base. Please leave your contact, our experts will contact you later. What's your e-mail/phone/wechat?"
]
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
}
},
"history": [],
"path": [],
"messages": [],
"reference": {},
"answer": []
}

View File

@ -1,103 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval:0"],
"upstream": ["begin"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["21ca4e6a2c8911ef8b1e0242ac120006"],
"empty_response": "Sorry, knowledge base has noting related information."
}
},
"downstream": ["relevant:0"],
"upstream": ["answer:0"]
},
"relevant:0": {
"obj": {
"component_name": "Relevant",
"params": {
"llm_id": "deepseek-chat",
"temperature": 0.02,
"yes": "generate:0",
"no": "keyword:0"
}
},
"downstream": ["keyword:0", "generate:0"],
"upstream": ["retrieval:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
},
"keyword:0": {
"obj": {
"component_name": "KeywordExtract",
"params": {
"llm_id": "deepseek-chat",
"prompt": "- Role: You're a question analyzer.\n - Requirements:\n - Summarize user's question, and give top %s important keyword/phrase.\n - Use comma as a delimiter to separate keywords/phrases.\n - Answer format: (in language of user's question)\n - keyword: ",
"temperature": 0.2,
"top_n": 1
}
},
"downstream": ["baidu:0"],
"upstream": ["relevant:0"]
},
"baidu:0": {
"obj":{
"component_name": "Baidu",
"params": {
"top_n": 10
}
},
"downstream": ["generate:1"],
"upstream": ["keyword:0"]
},
"generate:1": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the question based on content searched from Baidu. When the answer from a Baidu search is incomplete, you need to output the URL link of the corresponding content as well. When all the content searched from Baidu is irrelevant to the question, your answer must include the sentence, \"The answer you are looking for is not found in the Baidu search!\". Answers need to consider chat history.\n The content of Baidu search is as follows:\n {input}\n The above is the content of Baidu search.",
"temperature": 0.2
}
},
"downstream": ["answer:0"],
"upstream": ["baidu:0"]
}
},
"history": [],
"path": [],
"messages": [],
"reference": {},
"answer": []
}

View File

@ -1,79 +0,0 @@
{
"components": {
"begin": {
"obj":{
"component_name": "Begin",
"params": {
"prologue": "Hi there!"
}
},
"downstream": ["answer:0"],
"upstream": []
},
"answer:0": {
"obj": {
"component_name": "Answer",
"params": {}
},
"downstream": ["retrieval:0"],
"upstream": ["begin", "generate:0", "switch:0"]
},
"retrieval:0": {
"obj": {
"component_name": "Retrieval",
"params": {
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.3,
"top_n": 6,
"top_k": 1024,
"rerank_id": "BAAI/bge-reranker-v2-m3",
"kb_ids": ["869a236818b811ef91dffa163e197198"],
"empty_response": "Sorry, knowledge base has noting related information."
}
},
"downstream": ["relevant:0"],
"upstream": ["answer:0", "rewrite:0"]
},
"relevant:0": {
"obj": {
"component_name": "Relevant",
"params": {
"llm_id": "deepseek-chat",
"temperature": 0.02,
"yes": "generate:0",
"no": "rewrite:0"
}
},
"downstream": ["generate:0", "rewrite:0"],
"upstream": ["retrieval:0"]
},
"generate:0": {
"obj": {
"component_name": "Generate",
"params": {
"llm_id": "deepseek-chat",
"prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
"temperature": 0.02
}
},
"downstream": ["answer:0"],
"upstream": ["relevant:0"]
},
"rewrite:0": {
"obj":{
"component_name": "RewriteQuestion",
"params": {
"llm_id": "deepseek-chat",
"temperature": 0.8
}
},
"downstream": ["retrieval:0"],
"upstream": ["relevant:0"]
}
},
"history": [],
"messages": [],
"path": [],
"reference": [],
"answer": []
}

View File

@ -34,20 +34,15 @@ from api.db.services.task_service import queue_tasks, TaskService
from api.db.services.user_service import UserTenantService
from api import settings
from api.utils import get_uuid, current_timestamp, datetime_format
from api.utils.api_utils import server_error_response, get_data_error_result, get_json_result, validate_request, \
generate_confirmation_token
from api.utils.api_utils import server_error_response, get_data_error_result, get_json_result, validate_request, generate_confirmation_token
from api.utils.file_utils import filename_type, thumbnail
from rag.app.tag import label_question
from rag.prompts import keyword_extraction
from rag.utils.storage_factory import STORAGE_IMPL
from api.db.services.canvas_service import UserCanvasService
from agent.canvas import Canvas
from functools import partial
@manager.route('/new_token', methods=['POST']) # noqa: F821
@manager.route("/new_token", methods=["POST"]) # noqa: F821
@login_required
def new_token():
req = request.json
@ -57,12 +52,14 @@ def new_token():
return get_data_error_result(message="Tenant not found!")
tenant_id = tenants[0].tenant_id
obj = {"tenant_id": tenant_id, "token": generate_confirmation_token(tenant_id),
"create_time": current_timestamp(),
"create_date": datetime_format(datetime.now()),
"update_time": None,
"update_date": None
}
obj = {
"tenant_id": tenant_id,
"token": generate_confirmation_token(tenant_id),
"create_time": current_timestamp(),
"create_date": datetime_format(datetime.now()),
"update_time": None,
"update_date": None,
}
if req.get("canvas_id"):
obj["dialog_id"] = req["canvas_id"]
obj["source"] = "agent"
@ -77,7 +74,7 @@ def new_token():
return server_error_response(e)
@manager.route('/token_list', methods=['GET']) # noqa: F821
@manager.route("/token_list", methods=["GET"]) # noqa: F821
@login_required
def token_list():
try:
@ -92,21 +89,20 @@ def token_list():
return server_error_response(e)
@manager.route('/rm', methods=['POST']) # noqa: F821
@manager.route("/rm", methods=["POST"]) # noqa: F821
@validate_request("tokens", "tenant_id")
@login_required
def rm():
req = request.json
try:
for token in req["tokens"]:
APITokenService.filter_delete(
[APIToken.tenant_id == req["tenant_id"], APIToken.token == token])
APITokenService.filter_delete([APIToken.tenant_id == req["tenant_id"], APIToken.token == token])
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/stats', methods=['GET']) # noqa: F821
@manager.route("/stats", methods=["GET"]) # noqa: F821
@login_required
def stats():
try:
@ -115,76 +111,47 @@ def stats():
return get_data_error_result(message="Tenant not found!")
objs = API4ConversationService.stats(
tenants[0].tenant_id,
request.args.get(
"from_date",
(datetime.now() -
timedelta(
days=7)).strftime("%Y-%m-%d 00:00:00")),
request.args.get(
"to_date",
datetime.now().strftime("%Y-%m-%d %H:%M:%S")),
"agent" if "canvas_id" in request.args else None)
request.args.get("from_date", (datetime.now() - timedelta(days=7)).strftime("%Y-%m-%d 00:00:00")),
request.args.get("to_date", datetime.now().strftime("%Y-%m-%d %H:%M:%S")),
"agent" if "canvas_id" in request.args else None,
)
res = {
"pv": [(o["dt"], o["pv"]) for o in objs],
"uv": [(o["dt"], o["uv"]) for o in objs],
"speed": [(o["dt"], float(o["tokens"]) / (float(o["duration"] + 0.1))) for o in objs],
"tokens": [(o["dt"], float(o["tokens"]) / 1000.) for o in objs],
"tokens": [(o["dt"], float(o["tokens"]) / 1000.0) for o in objs],
"round": [(o["dt"], o["round"]) for o in objs],
"thumb_up": [(o["dt"], o["thumb_up"]) for o in objs]
"thumb_up": [(o["dt"], o["thumb_up"]) for o in objs],
}
return get_json_result(data=res)
except Exception as e:
return server_error_response(e)
@manager.route('/new_conversation', methods=['GET']) # noqa: F821
@manager.route("/new_conversation", methods=["GET"]) # noqa: F821
def set_conversation():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
if objs[0].source == "agent":
e, cvs = UserCanvasService.get_by_id(objs[0].dialog_id)
if not e:
return server_error_response("canvas not found.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
canvas = Canvas(cvs.dsl, objs[0].tenant_id)
conv = {
"id": get_uuid(),
"dialog_id": cvs.id,
"user_id": request.args.get("user_id", ""),
"message": [{"role": "assistant", "content": canvas.get_prologue()}],
"source": "agent"
}
API4ConversationService.save(**conv)
return get_json_result(data=conv)
else:
e, dia = DialogService.get_by_id(objs[0].dialog_id)
if not e:
return get_data_error_result(message="Dialog not found")
conv = {
"id": get_uuid(),
"dialog_id": dia.id,
"user_id": request.args.get("user_id", ""),
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
API4ConversationService.save(**conv)
return get_json_result(data=conv)
e, dia = DialogService.get_by_id(objs[0].dialog_id)
if not e:
return get_data_error_result(message="Dialog not found")
conv = {"id": get_uuid(), "dialog_id": dia.id, "user_id": request.args.get("user_id", ""), "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]}
API4ConversationService.save(**conv)
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/completion', methods=['POST']) # noqa: F821
@manager.route("/completion", methods=["POST"]) # noqa: F821
@validate_request("conversation_id", "messages")
def completion():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -213,87 +180,15 @@ def completion():
ans["id"] = message_id
def rename_field(ans):
reference = ans['reference']
reference = ans["reference"]
if not isinstance(reference, dict):
return
for chunk_i in reference.get('chunks', []):
if 'docnm_kwd' in chunk_i:
chunk_i['doc_name'] = chunk_i['docnm_kwd']
chunk_i.pop('docnm_kwd')
for chunk_i in reference.get("chunks", []):
if "docnm_kwd" in chunk_i:
chunk_i["doc_name"] = chunk_i["docnm_kwd"]
chunk_i.pop("docnm_kwd")
try:
if conv.source == "agent":
stream = req.get("stream", True)
conv.message.append(msg[-1])
e, cvs = UserCanvasService.get_by_id(conv.dialog_id)
if not e:
return server_error_response("canvas not found.")
del req["conversation_id"]
del req["messages"]
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
if not conv.reference:
conv.reference = []
conv.message.append({"role": "assistant", "content": "", "id": message_id})
conv.reference.append({"chunks": [], "doc_aggs": []})
final_ans = {"reference": [], "content": ""}
canvas = Canvas(cvs.dsl, objs[0].tenant_id)
canvas.messages.append(msg[-1])
canvas.add_user_input(msg[-1]["content"])
answer = canvas.run(stream=stream)
assert answer is not None, "Nothing. Is it over?"
if stream:
assert isinstance(answer, partial), "Nothing. Is it over?"
def sse():
nonlocal answer, cvs, conv
try:
for ans in answer():
for k in ans.keys():
final_ans[k] = ans[k]
ans = {"answer": ans["content"], "reference": ans.get("reference", [])}
fillin_conv(ans)
rename_field(ans)
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(sse(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
result = {"answer": final_ans["content"], "reference": final_ans.get("reference", [])}
fillin_conv(result)
API4ConversationService.append_message(conv.id, conv.to_dict())
rename_field(result)
return get_json_result(data=result)
# ******************For dialog******************
conv.message.append(msg[-1])
e, dia = DialogService.get_by_id(conv.dialog_id)
@ -313,13 +208,10 @@ def completion():
for ans in chat(dia, msg, True, **req):
fillin_conv(ans)
rename_field(ans)
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 500, "message": str(e), "data": {"answer": "**ERROR**: " + str(e), "reference": []}}, ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
if req.get("stream", True):
@ -343,14 +235,13 @@ def completion():
return server_error_response(e)
@manager.route('/conversation/<conversation_id>', methods=['GET']) # noqa: F821
@manager.route("/conversation/<conversation_id>", methods=["GET"]) # noqa: F821
# @login_required
def get(conversation_id):
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
try:
e, conv = API4ConversationService.get_by_id(conversation_id)
@ -358,30 +249,28 @@ def get(conversation_id):
return get_data_error_result(message="Conversation not found!")
conv = conv.to_dict()
if token != APIToken.query(dialog_id=conv['dialog_id'])[0].token:
return get_json_result(data=False, message='Authentication error: API key is invalid for this conversation_id!"',
code=settings.RetCode.AUTHENTICATION_ERROR)
if token != APIToken.query(dialog_id=conv["dialog_id"])[0].token:
return get_json_result(data=False, message='Authentication error: API key is invalid for this conversation_id!"', code=settings.RetCode.AUTHENTICATION_ERROR)
for referenct_i in conv['reference']:
for referenct_i in conv["reference"]:
if referenct_i is None or len(referenct_i) == 0:
continue
for chunk_i in referenct_i['chunks']:
if 'docnm_kwd' in chunk_i.keys():
chunk_i['doc_name'] = chunk_i['docnm_kwd']
chunk_i.pop('docnm_kwd')
for chunk_i in referenct_i["chunks"]:
if "docnm_kwd" in chunk_i.keys():
chunk_i["doc_name"] = chunk_i["docnm_kwd"]
chunk_i.pop("docnm_kwd")
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/document/upload', methods=['POST']) # noqa: F821
@manager.route("/document/upload", methods=["POST"]) # noqa: F821
@validate_request("kb_name")
def upload():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
kb_name = request.form.get("kb_name").strip()
tenant_id = objs[0].tenant_id
@ -389,20 +278,17 @@ def upload():
try:
e, kb = KnowledgebaseService.get_by_name(kb_name, tenant_id)
if not e:
return get_data_error_result(
message="Can't find this knowledgebase!")
return get_data_error_result(message="Can't find this knowledgebase!")
kb_id = kb.id
except Exception as e:
return server_error_response(e)
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
file = request.files['file']
if file.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
file = request.files["file"]
if file.filename == "":
return get_json_result(data=False, message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
@ -411,23 +297,18 @@ def upload():
kb_folder = FileService.new_a_file_from_kb(kb.tenant_id, kb.name, kb_root_folder["id"])
try:
if DocumentService.get_doc_count(kb.tenant_id) >= int(os.environ.get('MAX_FILE_NUM_PER_USER', 8192)):
return get_data_error_result(
message="Exceed the maximum file number of a free user!")
if DocumentService.get_doc_count(kb.tenant_id) >= int(os.environ.get("MAX_FILE_NUM_PER_USER", 8192)):
return get_data_error_result(message="Exceed the maximum file number of a free user!")
filename = duplicate_name(
DocumentService.query,
name=file.filename,
kb_id=kb_id)
filename = duplicate_name(DocumentService.query, name=file.filename, kb_id=kb_id)
filetype = filename_type(filename)
if not filetype:
return get_data_error_result(
message="This type of file has not been supported yet!")
return get_data_error_result(message="This type of file has not been supported yet!")
location = filename
while STORAGE_IMPL.obj_exist(kb_id, location):
location += "_"
blob = request.files['file'].read()
blob = request.files["file"].read()
STORAGE_IMPL.put(kb_id, location, blob)
doc = {
"id": get_uuid(),
@ -439,7 +320,7 @@ def upload():
"name": filename,
"location": location,
"size": len(blob),
"thumbnail": thumbnail(filename, blob)
"thumbnail": thumbnail(filename, blob),
}
form_data = request.form
@ -486,62 +367,50 @@ def upload():
return get_json_result(data=doc_result.to_json())
@manager.route('/document/upload_and_parse', methods=['POST']) # noqa: F821
@manager.route("/document/upload_and_parse", methods=["POST"]) # noqa: F821
@validate_request("conversation_id")
def upload_parse():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
if 'file' not in request.files:
return get_json_result(
data=False, message='No file part!', code=settings.RetCode.ARGUMENT_ERROR)
if "file" not in request.files:
return get_json_result(data=False, message="No file part!", code=settings.RetCode.ARGUMENT_ERROR)
file_objs = request.files.getlist('file')
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == '':
return get_json_result(
data=False, message='No file selected!', code=settings.RetCode.ARGUMENT_ERROR)
if file_obj.filename == "":
return get_json_result(data=False, message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR)
doc_ids = doc_upload_and_parse(request.form.get("conversation_id"), file_objs, objs[0].tenant_id)
return get_json_result(data=doc_ids)
@manager.route('/list_chunks', methods=['POST']) # noqa: F821
@manager.route("/list_chunks", methods=["POST"]) # noqa: F821
# @login_required
def list_chunks():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
try:
if "doc_name" in req.keys():
tenant_id = DocumentService.get_tenant_id_by_name(req['doc_name'])
doc_id = DocumentService.get_doc_id_by_doc_name(req['doc_name'])
tenant_id = DocumentService.get_tenant_id_by_name(req["doc_name"])
doc_id = DocumentService.get_doc_id_by_doc_name(req["doc_name"])
elif "doc_id" in req.keys():
tenant_id = DocumentService.get_tenant_id(req['doc_id'])
doc_id = req['doc_id']
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
doc_id = req["doc_id"]
else:
return get_json_result(
data=False, message="Can't find doc_name or doc_id"
)
return get_json_result(data=False, message="Can't find doc_name or doc_id")
kb_ids = KnowledgebaseService.get_kb_ids(tenant_id)
res = settings.retrievaler.chunk_list(doc_id, tenant_id, kb_ids)
res = [
{
"content": res_item["content_with_weight"],
"doc_name": res_item["docnm_kwd"],
"image_id": res_item["img_id"]
} for res_item in res
]
res = [{"content": res_item["content_with_weight"], "doc_name": res_item["docnm_kwd"], "image_id": res_item["img_id"]} for res_item in res]
except Exception as e:
return server_error_response(e)
@ -549,14 +418,13 @@ def list_chunks():
return get_json_result(data=res)
@manager.route('/list_kb_docs', methods=['POST']) # noqa: F821
@manager.route("/list_kb_docs", methods=["POST"]) # noqa: F821
# @login_required
def list_kb_docs():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
tenant_id = objs[0].tenant_id
@ -565,8 +433,7 @@ def list_kb_docs():
try:
e, kb = KnowledgebaseService.get_by_name(kb_name, tenant_id)
if not e:
return get_data_error_result(
message="Can't find this knowledgebase!")
return get_data_error_result(message="Can't find this knowledgebase!")
kb_id = kb.id
except Exception as e:
@ -579,9 +446,8 @@ def list_kb_docs():
keywords = req.get("keywords", "")
try:
docs, tol = DocumentService.get_by_kb_id(
kb_id, page_number, items_per_page, orderby, desc, keywords)
docs = [{"doc_id": doc['id'], "doc_name": doc['name']} for doc in docs]
docs, tol = DocumentService.get_by_kb_id(kb_id, page_number, items_per_page, orderby, desc, keywords)
docs = [{"doc_id": doc["id"], "doc_name": doc["name"]} for doc in docs]
return get_json_result(data={"total": tol, "docs": docs})
@ -589,28 +455,26 @@ def list_kb_docs():
return server_error_response(e)
@manager.route('/document/infos', methods=['POST']) # noqa: F821
@manager.route("/document/infos", methods=["POST"]) # noqa: F821
@validate_request("doc_ids")
def docinfos():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
doc_ids = req["doc_ids"]
docs = DocumentService.get_by_ids(doc_ids)
return get_json_result(data=list(docs.dicts()))
@manager.route('/document', methods=['DELETE']) # noqa: F821
@manager.route("/document", methods=["DELETE"]) # noqa: F821
# @login_required
def document_rm():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
tenant_id = objs[0].tenant_id
req = request.json
@ -621,9 +485,7 @@ def document_rm():
doc_ids.append(doc_id)
if not doc_ids:
return get_json_result(
data=False, message="Can't find doc_names or doc_ids"
)
return get_json_result(data=False, message="Can't find doc_names or doc_ids")
except Exception as e:
return server_error_response(e)
@ -645,8 +507,7 @@ def document_rm():
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_data_error_result(
message="Database error (Document removal)!")
return get_data_error_result(message="Database error (Document removal)!")
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
@ -662,17 +523,17 @@ def document_rm():
return get_json_result(data=True)
@manager.route('/completion_aibotk', methods=['POST']) # noqa: F821
@manager.route("/completion_aibotk", methods=["POST"]) # noqa: F821
@validate_request("Authorization", "conversation_id", "word")
def completion_faq():
import base64
req = request.json
token = req["Authorization"]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
e, conv = API4ConversationService.get_by_id(req["conversation_id"])
if not e:
@ -696,65 +557,6 @@ def completion_faq():
ans["id"] = message_id
try:
if conv.source == "agent":
conv.message.append(msg[-1])
e, cvs = UserCanvasService.get_by_id(conv.dialog_id)
if not e:
return server_error_response("canvas not found.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
if not conv.reference:
conv.reference = []
conv.message.append({"role": "assistant", "content": "", "id": message_id})
conv.reference.append({"chunks": [], "doc_aggs": []})
final_ans = {"reference": [], "doc_aggs": []}
canvas = Canvas(cvs.dsl, objs[0].tenant_id)
canvas.messages.append(msg[-1])
canvas.add_user_input(msg[-1]["content"])
answer = canvas.run(stream=False)
assert answer is not None, "Nothing. Is it over?"
data_type_picture = {
"type": 3,
"url": "base64 content"
}
data = [
{
"type": 1,
"content": ""
}
]
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
ans = {"answer": final_ans["content"], "reference": final_ans.get("reference", [])}
data[0]["content"] += re.sub(r'##\d\$\$', '', ans["answer"])
fillin_conv(ans)
API4ConversationService.append_message(conv.id, conv.to_dict())
chunk_idxs = [int(match[2]) for match in re.findall(r'##\d\$\$', ans["answer"])]
for chunk_idx in chunk_idxs[:1]:
if ans["reference"]["chunks"][chunk_idx]["img_id"]:
try:
bkt, nm = ans["reference"]["chunks"][chunk_idx]["img_id"].split("-")
response = STORAGE_IMPL.get(bkt, nm)
data_type_picture["url"] = base64.b64encode(response).decode('utf-8')
data.append(data_type_picture)
break
except Exception as e:
return server_error_response(e)
response = {"code": 200, "msg": "success", "data": data}
return response
# ******************For dialog******************
conv.message.append(msg[-1])
e, dia = DialogService.get_by_id(conv.dialog_id)
@ -767,31 +569,23 @@ def completion_faq():
conv.message.append({"role": "assistant", "content": "", "id": message_id})
conv.reference.append({"chunks": [], "doc_aggs": []})
data_type_picture = {
"type": 3,
"url": "base64 content"
}
data = [
{
"type": 1,
"content": ""
}
]
data_type_picture = {"type": 3, "url": "base64 content"}
data = [{"type": 1, "content": ""}]
ans = ""
for a in chat(dia, msg, stream=False, **req):
ans = a
break
data[0]["content"] += re.sub(r'##\d\$\$', '', ans["answer"])
data[0]["content"] += re.sub(r"##\d\$\$", "", ans["answer"])
fillin_conv(ans)
API4ConversationService.append_message(conv.id, conv.to_dict())
chunk_idxs = [int(match[2]) for match in re.findall(r'##\d\$\$', ans["answer"])]
chunk_idxs = [int(match[2]) for match in re.findall(r"##\d\$\$", ans["answer"])]
for chunk_idx in chunk_idxs[:1]:
if ans["reference"]["chunks"][chunk_idx]["img_id"]:
try:
bkt, nm = ans["reference"]["chunks"][chunk_idx]["img_id"].split("-")
response = STORAGE_IMPL.get(bkt, nm)
data_type_picture["url"] = base64.b64encode(response).decode('utf-8')
data_type_picture["url"] = base64.b64encode(response).decode("utf-8")
data.append(data_type_picture)
break
except Exception as e:
@ -804,14 +598,13 @@ def completion_faq():
return server_error_response(e)
@manager.route('/retrieval', methods=['POST']) # noqa: F821
@manager.route("/retrieval", methods=["POST"]) # noqa: F821
@validate_request("kb_id", "question")
def retrieval():
token = request.headers.get('Authorization').split()[1]
token = request.headers.get("Authorization").split()[1]
objs = APIToken.query(token=token)
if not objs:
return get_json_result(
data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Authentication error: API key is invalid!"', code=settings.RetCode.AUTHENTICATION_ERROR)
req = request.json
kb_ids = req.get("kb_id", [])
@ -827,28 +620,22 @@ def retrieval():
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
return get_json_result(
data=False, message='Knowledge bases use different embedding models or does not exist."',
code=settings.RetCode.AUTHENTICATION_ERROR)
return get_json_result(data=False, message='Knowledge bases use different embedding models or does not exist."', code=settings.RetCode.AUTHENTICATION_ERROR)
embd_mdl = TenantLLMService.model_instance(
kbs[0].tenant_id, LLMType.EMBEDDING.value, llm_name=kbs[0].embd_id)
embd_mdl = TenantLLMService.model_instance(kbs[0].tenant_id, LLMType.EMBEDDING.value, llm_name=kbs[0].embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = TenantLLMService.model_instance(
kbs[0].tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
rerank_mdl = TenantLLMService.model_instance(kbs[0].tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kbs[0].tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
ranks = settings.retrievaler.retrieval(question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl,
rank_feature=label_question(question, kbs))
ranks = settings.retrievaler.retrieval(
question, embd_mdl, kbs[0].tenant_id, kb_ids, page, size, similarity_threshold, vector_similarity_weight, top, doc_ids, rerank_mdl=rerank_mdl, rank_feature=label_question(question, kbs)
)
for c in ranks["chunks"]:
c.pop("vector", None)
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, message='No chunk found! Check the chunk status please!',
code=settings.RetCode.DATA_ERROR)
return get_json_result(data=False, message="No chunk found! Check the chunk status please!", code=settings.RetCode.DATA_ERROR)
return server_error_response(e)

View File

@ -1,286 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import traceback
from flask import request, Response
from flask_login import login_required, current_user
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request, get_data_error_result
from agent.canvas import Canvas
from peewee import MySQLDatabase, PostgresqlDatabase
from api.db.db_models import APIToken
@manager.route('/templates', methods=['GET']) # noqa: F821
@login_required
def templates():
return get_json_result(data=[c.to_dict() for c in CanvasTemplateService.get_all()])
@manager.route('/list', methods=['GET']) # noqa: F821
@login_required
def canvas_list():
return get_json_result(data=sorted([c.to_dict() for c in \
UserCanvasService.query(user_id=current_user.id)], key=lambda x: x["update_time"]*-1)
)
@manager.route('/rm', methods=['POST']) # noqa: F821
@validate_request("canvas_ids")
@login_required
def rm():
for i in request.json["canvas_ids"]:
if not UserCanvasService.query(user_id=current_user.id,id=i):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
UserCanvasService.delete_by_id(i)
return get_json_result(data=True)
@manager.route('/set', methods=['POST']) # noqa: F821
@validate_request("dsl", "title")
@login_required
def save():
req = request.json
req["user_id"] = current_user.id
if not isinstance(req["dsl"], str):
req["dsl"] = json.dumps(req["dsl"], ensure_ascii=False)
req["dsl"] = json.loads(req["dsl"])
if "id" not in req:
if UserCanvasService.query(user_id=current_user.id, title=req["title"].strip()):
return get_data_error_result(message=f"{req['title'].strip()} already exists.")
req["id"] = get_uuid()
if not UserCanvasService.save(**req):
return get_data_error_result(message="Fail to save canvas.")
else:
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
UserCanvasService.update_by_id(req["id"], req)
return get_json_result(data=req)
@manager.route('/get/<canvas_id>', methods=['GET']) # noqa: F821
@login_required
def get(canvas_id):
e, c = UserCanvasService.get_by_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
return get_json_result(data=c.to_dict())
@manager.route('/getsse/<canvas_id>', methods=['GET']) # type: ignore # noqa: F821
def getsse(canvas_id):
token = request.headers.get('Authorization').split()
if len(token) != 2:
return get_data_error_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_data_error_result(message='Authentication error: API key is invalid!"')
e, c = UserCanvasService.get_by_id(canvas_id)
if not e:
return get_data_error_result(message="canvas not found.")
return get_json_result(data=c.to_dict())
@manager.route('/completion', methods=['POST']) # noqa: F821
@validate_request("id")
@login_required
def run():
req = request.json
stream = req.get("stream", True)
e, cvs = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
final_ans = {"reference": [], "content": ""}
message_id = req.get("message_id", get_uuid())
try:
canvas = Canvas(cvs.dsl, current_user.id)
if "message" in req:
canvas.messages.append({"role": "user", "content": req["message"], "id": message_id})
canvas.add_user_input(req["message"])
except Exception as e:
return server_error_response(e)
if stream:
def sse():
nonlocal answer, cvs
try:
for ans in canvas.run(stream=True):
if ans.get("running_status"):
yield "data:" + json.dumps({"code": 0, "message": "",
"data": {"answer": ans["content"],
"running_status": True}},
ensure_ascii=False) + "\n\n"
continue
for k in ans.keys():
final_ans[k] = ans[k]
ans = {"answer": ans["content"], "reference": ans.get("reference", [])}
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if not canvas.path[-1]:
canvas.path.pop(-1)
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
except Exception as e:
cvs.dsl = json.loads(str(canvas))
if not canvas.path[-1]:
canvas.path.pop(-1)
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
traceback.print_exc()
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
resp = Response(sse(), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
for answer in canvas.run(stream=False):
if answer.get("running_status"):
continue
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
cvs.dsl = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], cvs.to_dict())
return get_json_result(data={"answer": final_ans["content"], "reference": final_ans.get("reference", [])})
@manager.route('/reset', methods=['POST']) # noqa: F821
@validate_request("id")
@login_required
def reset():
req = request.json
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas.reset()
req["dsl"] = json.loads(str(canvas))
UserCanvasService.update_by_id(req["id"], {"dsl": req["dsl"]})
return get_json_result(data=req["dsl"])
except Exception as e:
return server_error_response(e)
@manager.route('/input_elements', methods=['GET']) # noqa: F821
@login_required
def input_elements():
cvs_id = request.args.get("id")
cpn_id = request.args.get("component_id")
try:
e, user_canvas = UserCanvasService.get_by_id(cvs_id)
if not e:
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=cvs_id):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
return get_json_result(data=canvas.get_component_input_elements(cpn_id))
except Exception as e:
return server_error_response(e)
@manager.route('/debug', methods=['POST']) # noqa: F821
@validate_request("id", "component_id", "params")
@login_required
def debug():
req = request.json
for p in req["params"]:
assert p.get("key")
try:
e, user_canvas = UserCanvasService.get_by_id(req["id"])
if not e:
return get_data_error_result(message="canvas not found.")
if not UserCanvasService.query(user_id=current_user.id, id=req["id"]):
return get_json_result(
data=False, message='Only owner of canvas authorized for this operation.',
code=RetCode.OPERATING_ERROR)
canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
canvas.get_component(req["component_id"])["obj"]._param.debug_inputs = req["params"]
df = canvas.get_component(req["component_id"])["obj"].debug()
return get_json_result(data=df.to_dict(orient="records"))
except Exception as e:
return server_error_response(e)
@manager.route('/test_db_connect', methods=['POST']) # noqa: F821
@validate_request("db_type", "database", "username", "host", "port", "password")
@login_required
def test_db_connect():
req = request.json
try:
if req["db_type"] in ["mysql", "mariadb"]:
db = MySQLDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
password=req["password"])
elif req["db_type"] == 'postgresql':
db = PostgresqlDatabase(req["database"], user=req["username"], host=req["host"], port=req["port"],
password=req["password"])
elif req["db_type"] == 'mssql':
import pyodbc
connection_string = (
f"DRIVER={{ODBC Driver 17 for SQL Server}};"
f"SERVER={req['host']},{req['port']};"
f"DATABASE={req['database']};"
f"UID={req['username']};"
f"PWD={req['password']};"
)
db = pyodbc.connect(connection_string)
cursor = db.cursor()
cursor.execute("SELECT 1")
cursor.close()
else:
return server_error_response("Unsupported database type.")
if req["db_type"] != 'mssql':
db.connect()
db.close()
return get_json_result(data="Database Connection Successful!")
except Exception as e:
return server_error_response(e)

View File

@ -1,39 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from api.db.services.canvas_service import UserCanvasService
from api.utils.api_utils import get_error_data_result, token_required
from api.utils.api_utils import get_result
from flask import request
@manager.route('/agents', methods=['GET']) # noqa: F821
@token_required
def list_agents(tenant_id):
id = request.args.get("id")
title = request.args.get("title")
if id or title:
canvas = UserCanvasService.query(id=id, title=title, user_id=tenant_id)
if not canvas:
return get_error_data_result("The agent doesn't exist.")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "update_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
else:
desc = True
canvas = UserCanvasService.get_list(tenant_id,page_number,items_per_page,orderby,desc,id,title)
return get_result(data=canvas)

View File

@ -20,20 +20,15 @@ import time
from api.db import LLMType
from api.db.services.conversation_service import ConversationService, iframe_completion
from api.db.services.conversation_service import completion as rag_completion
from api.db.services.canvas_service import completion as agent_completion
from api.db.services.dialog_service import ask, chat
from agent.canvas import Canvas
from api.db import StatusEnum
from api.db.db_models import APIToken
from api.db.services.api_service import API4ConversationService
from api.db.services.canvas_service import UserCanvasService
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result, validate_request
from api.utils.api_utils import get_result, token_required
from api.db.services.llm_service import LLMBundle
from api.db.services.file_service import FileService
from flask import jsonify, request, Response
@ -66,68 +61,6 @@ def create(tenant_id, chat_id):
return get_result(data=conv)
@manager.route("/agents/<agent_id>/sessions", methods=["POST"]) # noqa: F821
@token_required
def create_agent_session(tenant_id, agent_id):
req = request.json
if not request.is_json:
req = request.form
files = request.files
user_id = request.args.get("user_id", "")
e, cvs = UserCanvasService.get_by_id(agent_id)
if not e:
return get_error_data_result("Agent not found.")
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_error_data_result("You cannot access the agent.")
if not isinstance(cvs.dsl, str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
canvas = Canvas(cvs.dsl, tenant_id)
canvas.reset()
query = canvas.get_preset_param()
if query:
for ele in query:
if not ele["optional"]:
if ele["type"] == "file":
if files is None or not files.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if req is None or not req.get(ele["key"]):
return get_error_data_result(f"`{ele['key']}` with type `{ele['type']}` is required")
ele["value"] = req[ele["key"]]
else:
if ele["type"] == "file":
if files is not None and files.get(ele["key"]):
upload_file = files.get(ele["key"])
file_content = FileService.parse_docs([upload_file], user_id)
file_name = upload_file.filename
ele["value"] = file_name + "\n" + file_content
else:
if "value" in ele:
ele.pop("value")
else:
if req is not None and req.get(ele["key"]):
ele["value"] = req[ele["key"]]
else:
if "value" in ele:
ele.pop("value")
else:
for ans in canvas.run(stream=False):
pass
cvs.dsl = json.loads(str(canvas))
conv = {"id": get_uuid(), "dialog_id": cvs.id, "user_id": user_id, "message": [{"role": "assistant", "content": canvas.get_prologue()}], "source": "agent", "dsl": cvs.dsl}
API4ConversationService.save(**conv)
conv["agent_id"] = conv.pop("dialog_id")
return get_result(data=conv)
@manager.route("/chats/<chat_id>/sessions/<session_id>", methods=["PUT"]) # noqa: F821
@token_required
def update(tenant_id, chat_id, session_id):
@ -317,49 +250,6 @@ def chat_completion_openai_like(tenant_id, chat_id):
return jsonify(response)
@manager.route("/agents/<agent_id>/completions", methods=["POST"]) # noqa: F821
@token_required
def agent_completions(tenant_id, agent_id):
req = request.json
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
if not cvs:
return get_error_data_result(f"You don't own the agent {agent_id}")
if req.get("session_id"):
dsl = cvs[0].dsl
if not isinstance(dsl, str):
dsl = json.dumps(dsl)
# canvas = Canvas(dsl, tenant_id)
# if canvas.get_preset_param():
# req["question"] = ""
conv = API4ConversationService.query(id=req["session_id"], dialog_id=agent_id)
if not conv:
return get_error_data_result(f"You don't own the session {req['session_id']}")
# If an update to UserCanvas is detected, update the API4Conversation.dsl
sync_dsl = req.get("sync_dsl", False)
if sync_dsl is True and cvs[0].update_time > conv[0].update_time:
current_dsl = conv[0].dsl
new_dsl = json.loads(dsl)
state_fields = ["history", "messages", "path", "reference"]
states = {field: current_dsl.get(field, []) for field in state_fields}
current_dsl.update(new_dsl)
current_dsl.update(states)
API4ConversationService.update_by_id(req["session_id"], {"dsl": current_dsl})
else:
req["question"] = ""
if req.get("stream", True):
resp = Response(agent_completion(tenant_id, agent_id, **req), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
try:
for answer in agent_completion(tenant_id, agent_id, **req):
return get_result(data=answer)
except Exception as e:
return get_error_data_result(str(e))
@manager.route("/chats/<chat_id>/sessions", methods=["GET"]) # noqa: F821
@token_required
def list_session(tenant_id, chat_id):
@ -413,59 +303,6 @@ def list_session(tenant_id, chat_id):
return get_result(data=convs)
@manager.route("/agents/<agent_id>/sessions", methods=["GET"]) # noqa: F821
@token_required
def list_agent_session(tenant_id, agent_id):
if not UserCanvasService.query(user_id=tenant_id, id=agent_id):
return get_error_data_result(message=f"You don't own the agent {agent_id}.")
id = request.args.get("id")
user_id = request.args.get("user_id")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "update_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
else:
desc = True
# dsl defaults to True in all cases except for False and false
include_dsl = request.args.get("dsl") != "False" and request.args.get("dsl") != "false"
convs = API4ConversationService.get_list(agent_id, tenant_id, page_number, items_per_page, orderby, desc, id, user_id, include_dsl)
if not convs:
return get_result(data=[])
for conv in convs:
conv["messages"] = conv.pop("message")
infos = conv["messages"]
for info in infos:
if "prompt" in info:
info.pop("prompt")
conv["agent_id"] = conv.pop("dialog_id")
if conv["reference"]:
messages = conv["messages"]
message_num = 0
chunk_num = 0
while message_num < len(messages):
if message_num != 0 and messages[message_num]["role"] != "user":
chunk_list = []
if "chunks" in conv["reference"][chunk_num]:
chunks = conv["reference"][chunk_num]["chunks"]
for chunk in chunks:
new_chunk = {
"id": chunk.get("chunk_id", chunk.get("id")),
"content": chunk.get("content_with_weight", chunk.get("content")),
"document_id": chunk.get("doc_id", chunk.get("document_id")),
"document_name": chunk.get("docnm_kwd", chunk.get("document_name")),
"dataset_id": chunk.get("kb_id", chunk.get("dataset_id")),
"image_id": chunk.get("image_id", chunk.get("img_id")),
"positions": chunk.get("positions", chunk.get("position_int")),
}
chunk_list.append(new_chunk)
chunk_num += 1
messages[message_num]["reference"] = chunk_list
message_num += 1
del conv["reference"]
return get_result(data=convs)
@manager.route("/chats/<chat_id>/sessions", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id, chat_id):
@ -492,38 +329,6 @@ def delete(tenant_id, chat_id):
return get_result()
@manager.route("/agents/<agent_id>/sessions", methods=["DELETE"]) # noqa: F821
@token_required
def delete_agent_session(tenant_id, agent_id):
req = request.json
cvs = UserCanvasService.query(user_id=tenant_id, id=agent_id)
if not cvs:
return get_error_data_result(f"You don't own the agent {agent_id}")
convs = API4ConversationService.query(dialog_id=agent_id)
if not convs:
return get_error_data_result(f"Agent {agent_id} has no sessions")
if not req:
ids = None
else:
ids = req.get("ids")
if not ids:
conv_list = []
for conv in convs:
conv_list.append(conv.id)
else:
conv_list = ids
for session_id in conv_list:
conv = API4ConversationService.query(id=session_id, dialog_id=agent_id)
if not conv:
return get_error_data_result(f"The agent doesn't own the session ${session_id}")
API4ConversationService.delete_by_id(session_id)
return get_result()
@manager.route("/sessions/ask", methods=["POST"]) # noqa: F821
@token_required
def ask_about(tenant_id):
@ -634,30 +439,3 @@ def chatbot_completions(dialog_id):
for answer in iframe_completion(dialog_id, **req):
return get_result(data=answer)
@manager.route("/agentbots/<agent_id>/completions", methods=["POST"]) # noqa: F821
def agent_bot_completions(agent_id):
req = request.json
token = request.headers.get("Authorization").split()
if len(token) != 2:
return get_error_data_result(message='Authorization is not valid!"')
token = token[1]
objs = APIToken.query(beta=token)
if not objs:
return get_error_data_result(message='Authentication error: API key is invalid!"')
if "quote" not in req:
req["quote"] = False
if req.get("stream", True):
resp = Response(agent_completion(objs[0].tenant_id, agent_id, **req), mimetype="text/event-stream")
resp.headers.add_header("Cache-control", "no-cache")
resp.headers.add_header("Connection", "keep-alive")
resp.headers.add_header("X-Accel-Buffering", "no")
resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
return resp
for answer in agent_completion(objs[0].tenant_id, agent_id, **req):
return get_result(data=answer)

View File

@ -17,14 +17,12 @@ import logging
import base64
import json
import os
import time
import uuid
from copy import deepcopy
from api.db import LLMType, UserTenantRole
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
from api.db.services import UserService
from api.db.services.canvas_service import CanvasTemplateService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
@ -34,8 +32,8 @@ from api.utils.file_utils import get_project_base_directory
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')
base64_encoded = base64.b64encode(input_string.encode("utf-8"))
return base64_encoded.decode("utf-8")
def init_superuser():
@ -55,20 +53,14 @@ def init_superuser():
"embd_id": settings.EMBEDDING_MDL,
"asr_id": settings.ASR_MDL,
"parser_ids": settings.PARSERS,
"img2txt_id": settings.IMAGE2TEXT_MDL
}
usr_tenant = {
"tenant_id": user_info["id"],
"user_id": user_info["id"],
"invited_by": user_info["id"],
"role": UserTenantRole.OWNER
"img2txt_id": settings.IMAGE2TEXT_MDL,
}
usr_tenant = {"tenant_id": user_info["id"], "user_id": user_info["id"], "invited_by": user_info["id"], "role": UserTenantRole.OWNER}
tenant_llm = []
for llm in LLMService.query(fid=settings.LLM_FACTORY):
tenant_llm.append(
{"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL})
{"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type, "api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL}
)
if not UserService.save(**user_info):
logging.error("can't init admin.")
@ -76,23 +68,16 @@ def init_superuser():
TenantService.insert(**tenant)
UserTenantService.insert(**usr_tenant)
TenantLLMService.insert_many(tenant_llm)
logging.info(
"Super user initialized. email: admin@ragflow.io, password: admin. Changing the password after login is strongly recommended.")
logging.info("Super user initialized. email: admin@ragflow.io, password: admin. Changing the password after login is strongly recommended.")
chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
msg = chat_mdl.chat(system="", history=[
{"role": "user", "content": "Hello!"}], gen_conf={})
msg = chat_mdl.chat(system="", history=[{"role": "user", "content": "Hello!"}], gen_conf={})
if msg.find("ERROR: ") == 0:
logging.error(
"'{}' dosen't work. {}".format(
tenant["llm_id"],
msg))
logging.error("'{}' dosen't work. {}".format(tenant["llm_id"], msg))
embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
v, c = embd_mdl.encode(["Hello!"])
if c == 0:
logging.error(
"'{}' dosen't work!".format(
tenant["embd_id"]))
logging.error("'{}' dosen't work!".format(tenant["embd_id"]))
def init_llm_factory():
@ -132,8 +117,12 @@ def init_llm_factory():
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "cohere"], {"llm_factory": "Cohere"})
TenantService.filter_update([1 == 1], {
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"})
TenantService.filter_update(
[1 == 1],
{
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"
},
)
## insert openai two embedding models to the current openai user.
# print("Start to insert 2 OpenAI embedding models...")
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
@ -155,31 +144,10 @@ def init_llm_factory():
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
def add_graph_templates():
dir = os.path.join(get_project_base_directory(), "agent", "templates")
for fnm in os.listdir(dir):
try:
cnvs = json.load(open(os.path.join(dir, fnm), "r",encoding="utf-8"))
try:
CanvasTemplateService.save(**cnvs)
except Exception:
CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
except Exception:
logging.exception("Add graph templates error: ")
def init_web_data():
start_time = time.time()
init_llm_factory()
# if not UserService.get_all().count():
# init_superuser()
add_graph_templates()
logging.info("init web data success:{}".format(time.time() - start_time))
if __name__ == '__main__':
if __name__ == "__main__":
init_web_db()
init_web_data()

View File

@ -1,155 +0,0 @@
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import time
import traceback
from uuid import uuid4
from agent.canvas import Canvas
from api.db.db_models import DB, CanvasTemplate, UserCanvas, API4Conversation
from api.db.services.api_service import API4ConversationService
from api.db.services.common_service import CommonService
from api.db.services.conversation_service import structure_answer
from api.utils import get_uuid
class CanvasTemplateService(CommonService):
model = CanvasTemplate
class UserCanvasService(CommonService):
model = UserCanvas
@classmethod
@DB.connection_context()
def get_list(cls, tenant_id,
page_number, items_per_page, orderby, desc, id, title):
agents = cls.model.select()
if id:
agents = agents.where(cls.model.id == id)
if title:
agents = agents.where(cls.model.title == title)
agents = agents.where(cls.model.user_id == tenant_id)
if desc:
agents = agents.order_by(cls.model.getter_by(orderby).desc())
else:
agents = agents.order_by(cls.model.getter_by(orderby).asc())
agents = agents.paginate(page_number, items_per_page)
return list(agents.dicts())
def completion(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
e, cvs = UserCanvasService.get_by_id(agent_id)
assert e, "Agent not found."
assert cvs.user_id == tenant_id, "You do not own the agent."
if not isinstance(cvs.dsl,str):
cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
canvas = Canvas(cvs.dsl, tenant_id)
canvas.reset()
message_id = str(uuid4())
if not session_id:
query = canvas.get_preset_param()
if query:
for ele in query:
if not ele["optional"]:
if not kwargs.get(ele["key"]):
assert False, f"`{ele['key']}` is required"
ele["value"] = kwargs[ele["key"]]
if ele["optional"]:
if kwargs.get(ele["key"]):
ele["value"] = kwargs[ele['key']]
else:
if "value" in ele:
ele.pop("value")
cvs.dsl = json.loads(str(canvas))
session_id=get_uuid()
conv = {
"id": session_id,
"dialog_id": cvs.id,
"user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
"message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
"source": "agent",
"dsl": cvs.dsl
}
API4ConversationService.save(**conv)
conv = API4Conversation(**conv)
else:
e, conv = API4ConversationService.get_by_id(session_id)
assert e, "Session not found!"
canvas = Canvas(json.dumps(conv.dsl), tenant_id)
canvas.messages.append({"role": "user", "content": question, "id": message_id})
canvas.add_user_input(question)
if not conv.message:
conv.message = []
conv.message.append({
"role": "user",
"content": question,
"id": message_id
})
if not conv.reference:
conv.reference = []
conv.reference.append({"chunks": [], "doc_aggs": []})
final_ans = {"reference": [], "content": ""}
if stream:
try:
for ans in canvas.run(stream=stream):
if ans.get("running_status"):
yield "data:" + json.dumps({"code": 0, "message": "",
"data": {"answer": ans["content"],
"running_status": True}},
ensure_ascii=False) + "\n\n"
continue
for k in ans.keys():
final_ans[k] = ans[k]
ans = {"answer": ans["content"], "reference": ans.get("reference", []), "param": canvas.get_preset_param()}
ans = structure_answer(conv, ans, message_id, session_id)
yield "data:" + json.dumps({"code": 0, "message": "", "data": ans},
ensure_ascii=False) + "\n\n"
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
canvas.history.append(("assistant", final_ans["content"]))
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
except Exception as e:
traceback.print_exc()
conv.dsl = json.loads(str(canvas))
API4ConversationService.append_message(conv.id, conv.to_dict())
yield "data:" + json.dumps({"code": 500, "message": str(e),
"data": {"answer": "**ERROR**: " + str(e), "reference": []}},
ensure_ascii=False) + "\n\n"
yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
else:
for answer in canvas.run(stream=False):
if answer.get("running_status"):
continue
final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
canvas.messages.append({"role": "assistant", "content": final_ans["content"], "id": message_id})
if final_ans.get("reference"):
canvas.reference.append(final_ans["reference"])
conv.dsl = json.loads(str(canvas))
result = {"answer": final_ans["content"], "reference": final_ans.get("reference", []) , "param": canvas.get_preset_param()}
result = structure_answer(conv, result, message_id, session_id)
API4ConversationService.append_message(conv.id, conv.to_dict())
yield result
break

View File

@ -20,10 +20,12 @@ from rag.settings import print_rag_settings
from rag.utils.redis_conn import RedisDistributedLock
from api.utils.log_utils import initRootLogger
initRootLogger("ragflow_server")
stop_event = threading.Event()
def update_progress():
redis_lock = RedisDistributedLock("update_progress", timeout=60)
while not stop_event.is_set():
@ -37,13 +39,15 @@ def update_progress():
finally:
redis_lock.release()
def signal_handler(sig, frame):
logging.info("Received interrupt signal, shutting down...")
stop_event.set()
time.sleep(1)
sys.exit(0)
if __name__ == '__main__':
if __name__ == "__main__":
logging.info(r"""
_____ ___ _____ _____ _ _____ _ __ _____ _ _ _ _____
| _ \ / | / ___| | ___| | | / _ \ | | / / | _ \ | | | | | | / ___/
@ -52,29 +56,21 @@ if __name__ == '__main__':
| | \ \ / / | | | |_| | | | | |___ | |_| | | |/ |/ / | | | |___ | |_| | ___| |
|_| \_\ /_/ |_| \_____/ |_| |_____| \_____/ |___/|___/ |_| |_____| \_____/ /_____/
""")
logging.info(
f'RAGFlow base version: {get_ragflow_version()}'
)
logging.info(
f'project base: {utils.file_utils.get_project_base_directory()}'
)
logging.info(f"RAGFlow base version: {get_ragflow_version()}")
logging.info(f"project base: {utils.file_utils.get_project_base_directory()}")
show_configs()
settings.init_settings()
print_rag_settings()
# init db
init_web_db()
init_web_data()
# init runtime config
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--version", default=False, help="RAGFlow version", action="store_true"
)
parser.add_argument(
"--debug", default=False, help="debug mode", action="store_true"
)
parser.add_argument("--version", default=False, help="RAGFlow version", action="store_true")
parser.add_argument("--debug", default=False, help="debug mode", action="store_true")
args = parser.parse_args()
if args.version:
print(get_ragflow_version())

View File

@ -14,9 +14,9 @@
# limitations under the License.
#
'''
"""
The example is about CRUD operations (Create, Read, Update, Delete) on a dataset.
'''
"""
from ragflow_sdk import RAGFlow
import sys
@ -32,7 +32,7 @@ try:
dataset_instance = ragflow_instance.create_dataset(name="dataset_instance")
# update the dataset instance
updated_message = {"name":"updated_dataset"}
updated_message = {"name": "updated_dataset"}
updated_dataset = dataset_instance.update(updated_message)
# get the dataset (list datasets)
@ -51,5 +51,3 @@ try:
except Exception as e:
print(str(e))
sys.exit(-1)

View File

@ -6,18 +6,10 @@ from .modules.chat import Chat
from .modules.session import Session
from .modules.document import Document
from .modules.chunk import Chunk
from .modules.agent import Agent
beartype_this_package()
__version__ = importlib.metadata.version("ragflow_sdk")
__all__ = [
"RAGFlow",
"DataSet",
"Chat",
"Session",
"Document",
"Chunk",
"Agent"
]
__all__ = ["RAGFlow", "DataSet", "Chat", "Session", "Document", "Chunk"]

View File

@ -1,94 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .base import Base
from .session import Session
class Agent(Base):
def __init__(self, rag, res_dict):
self.id = None
self.avatar = None
self.canvas_type = None
self.description = None
self.dsl = None
super().__init__(rag, res_dict)
class Dsl(Base):
def __init__(self, rag, res_dict):
self.answer = []
self.components = {
"begin": {
"downstream": ["Answer:China"],
"obj": {
"component_name": "Begin",
"params": {}
},
"upstream": []
}
}
self.graph = {
"edges": [],
"nodes": [
{
"data": {
"label": "Begin",
"name": "begin"
},
"id": "begin",
"position": {
"x": 50,
"y": 200
},
"sourcePosition": "left",
"targetPosition": "right",
"type": "beginNode"
}
]
}
self.history = []
self.messages = []
self.path = []
self.reference = []
super().__init__(rag, res_dict)
def create_session(self, **kwargs) -> Session:
res = self.post(f"/agents/{self.id}/sessions", json=kwargs)
res = res.json()
if res.get("code") == 0:
return Session(self.rag, res.get("data"))
raise Exception(res.get("message"))
def list_sessions(self, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True,
id: str = None) -> list[Session]:
res = self.get(f"/agents/{self.id}/sessions",
{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id})
res = res.json()
if res.get("code") == 0:
result_list = []
for data in res.get("data"):
temp_agent = Session(self.rag, data)
result_list.append(temp_agent)
return result_list
raise Exception(res.get("message"))
def delete_sessions(self, ids: list[str] | None = None):
res = self.rm(f"/agents/{self.id}/sessions", {"ids": ids})
res = res.json()
if res.get("code") != 0:
raise Exception(res.get("message"))

View File

@ -28,17 +28,12 @@ class Session(Base):
if key == "chat_id" and value is not None:
self.chat_id = None
self.__session_type = "chat"
if key == "agent_id" and value is not None:
self.agent_id = None
self.__session_type = "agent"
super().__init__(rag, res_dict)
def ask(self, question="", stream=True, **kwargs):
if self.__session_type == "agent":
res = self._ask_agent(question, stream)
elif self.__session_type == "chat":
res = self._ask_chat(question, stream, **kwargs)
res = self._ask_chat(question, stream, **kwargs)
for line in res.iter_lines():
line = line.decode("utf-8")
if line.startswith("{"):
@ -51,10 +46,7 @@ class Session(Base):
continue
answer = json_data["data"]["answer"]
reference = json_data["data"].get("reference", {})
temp_dict = {
"content": answer,
"role": "assistant"
}
temp_dict = {"content": answer, "role": "assistant"}
if reference and "chunks" in reference:
chunks = reference["chunks"]
temp_dict["reference"] = chunks
@ -63,22 +55,15 @@ class Session(Base):
yield message
if not stream:
return message
def _ask_chat(self, question: str, stream: bool, **kwargs):
json_data = {"question": question, "stream": stream, "session_id": self.id}
json_data.update(kwargs)
res = self.post(f"/chats/{self.chat_id}/completions",
json_data, stream=stream)
return res
def _ask_agent(self, question: str, stream: bool):
res = self.post(f"/agents/{self.agent_id}/completions",
{"question": question, "stream": stream, "session_id": self.id}, stream=stream)
res = self.post(f"/chats/{self.chat_id}/completions", json_data, stream=stream)
return res
def update(self, update_message):
res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}",
update_message)
res = self.put(f"/chats/{self.chat_id}/sessions/{self.id}", update_message)
res = res.json()
if res.get("code") != 0:
raise Exception(res.get("message"))

View File

@ -18,11 +18,10 @@ import requests
from .modules.chat import Chat
from .modules.chunk import Chunk
from .modules.dataset import DataSet
from .modules.agent import Agent
class RAGFlow:
def __init__(self, api_key, base_url, version='v1'):
def __init__(self, api_key, base_url, version="v1"):
"""
api_url: http://<host_address>/api/v1
"""
@ -31,11 +30,11 @@ class RAGFlow:
self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)}
def post(self, path, json=None, stream=False, files=None):
res = requests.post(url=self.api_url + path, json=json, headers=self.authorization_header, stream=stream,files=files)
res = requests.post(url=self.api_url + path, json=json, headers=self.authorization_header, stream=stream, files=files)
return res
def get(self, path, params=None, json=None):
res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header,json=json)
res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header, json=json)
return res
def delete(self, path, json):
@ -43,54 +42,63 @@ class RAGFlow:
return res
def put(self, path, json):
res = requests.put(url=self.api_url + path, json= json,headers=self.authorization_header)
res = requests.put(url=self.api_url + path, json=json, headers=self.authorization_header)
return res
def create_dataset(self, name: str, avatar: str = "", description: str = "", embedding_model:str = "BAAI/bge-large-zh-v1.5",
language: str = "English",
permission: str = "me",chunk_method: str = "naive",
parser_config: DataSet.ParserConfig = None) -> DataSet:
def create_dataset(
self,
name: str,
avatar: str = "",
description: str = "",
embedding_model: str = "BAAI/bge-large-zh-v1.5",
language: str = "English",
permission: str = "me",
chunk_method: str = "naive",
parser_config: DataSet.ParserConfig = None,
) -> DataSet:
if parser_config:
parser_config = parser_config.to_json()
res = self.post("/datasets",
{"name": name, "avatar": avatar, "description": description,"embedding_model":embedding_model,
"language": language,
"permission": permission, "chunk_method": chunk_method,
"parser_config": parser_config
}
)
res = self.post(
"/datasets",
{
"name": name,
"avatar": avatar,
"description": description,
"embedding_model": embedding_model,
"language": language,
"permission": permission,
"chunk_method": chunk_method,
"parser_config": parser_config,
},
)
res = res.json()
if res.get("code") == 0:
return DataSet(self, res["data"])
raise Exception(res["message"])
def delete_datasets(self, ids: list[str] | None = None):
res = self.delete("/datasets",{"ids": ids})
res=res.json()
res = self.delete("/datasets", {"ids": ids})
res = res.json()
if res.get("code") != 0:
raise Exception(res["message"])
def get_dataset(self,name: str):
def get_dataset(self, name: str):
_list = self.list_datasets(name=name)
if len(_list) > 0:
return _list[0]
raise Exception("Dataset %s not found" % name)
def list_datasets(self, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True,
id: str | None = None, name: str | None = None) -> \
list[DataSet]:
res = self.get("/datasets",
{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
def list_datasets(self, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True, id: str | None = None, name: str | None = None) -> list[DataSet]:
res = self.get("/datasets", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
res = res.json()
result_list = []
if res.get("code") == 0:
for data in res['data']:
for data in res["data"]:
result_list.append(DataSet(self, data))
return result_list
raise Exception(res["message"])
def create_chat(self, name: str, avatar: str = "", dataset_ids=None,
llm: Chat.LLM | None = None, prompt: Chat.Prompt | None = None) -> Chat:
def create_chat(self, name: str, avatar: str = "", dataset_ids=None, llm: Chat.LLM | None = None, prompt: Chat.Prompt | None = None) -> Chat:
if dataset_ids is None:
dataset_ids = []
dataset_list = []
@ -98,25 +106,33 @@ class RAGFlow:
dataset_list.append(id)
if llm is None:
llm = Chat.LLM(self, {"model_name": None,
"temperature": 0.1,
"top_p": 0.3,
"presence_penalty": 0.4,
"frequency_penalty": 0.7,
"max_tokens": 512, })
llm = Chat.LLM(
self,
{
"model_name": None,
"temperature": 0.1,
"top_p": 0.3,
"presence_penalty": 0.4,
"frequency_penalty": 0.7,
"max_tokens": 512,
},
)
if prompt is None:
prompt = Chat.Prompt(self, {"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.7,
"top_n": 8,
"top_k": 1024,
"variables": [{
"key": "knowledge",
"optional": True
}], "rerank_model": "",
"empty_response": None,
"opener": None,
"show_quote": True,
"prompt": None})
prompt = Chat.Prompt(
self,
{
"similarity_threshold": 0.2,
"keywords_similarity_weight": 0.7,
"top_n": 8,
"top_k": 1024,
"variables": [{"key": "knowledge", "optional": True}],
"rerank_model": "",
"empty_response": None,
"opener": None,
"show_quote": True,
"prompt": None,
},
)
if prompt.opener is None:
prompt.opener = "Hi! I'm your assistant, what can I do for you?"
if prompt.prompt is None:
@ -127,70 +143,63 @@ class RAGFlow:
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
)
temp_dict = {"name": name,
"avatar": avatar,
"dataset_ids": dataset_list if dataset_list else [],
"llm": llm.to_json(),
"prompt": prompt.to_json()}
temp_dict = {"name": name, "avatar": avatar, "dataset_ids": dataset_list if dataset_list else [], "llm": llm.to_json(), "prompt": prompt.to_json()}
res = self.post("/chats", temp_dict)
res = res.json()
if res.get("code") == 0:
return Chat(self, res["data"])
raise Exception(res["message"])
def delete_chats(self,ids: list[str] | None = None):
res = self.delete('/chats',
{"ids":ids})
def delete_chats(self, ids: list[str] | None = None):
res = self.delete("/chats", {"ids": ids})
res = res.json()
if res.get("code") != 0:
raise Exception(res["message"])
def list_chats(self, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True,
id: str | None = None, name: str | None = None) -> list[Chat]:
res = self.get("/chats",{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
def list_chats(self, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True, id: str | None = None, name: str | None = None) -> list[Chat]:
res = self.get("/chats", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
res = res.json()
result_list = []
if res.get("code") == 0:
for data in res['data']:
for data in res["data"]:
result_list.append(Chat(self, data))
return result_list
raise Exception(res["message"])
def retrieve(self, dataset_ids, document_ids=None, question="", page=1, page_size=30, similarity_threshold=0.2, vector_similarity_weight=0.3, top_k=1024, rerank_id: str | None = None, keyword:bool=False, ):
if document_ids is None:
document_ids = []
data_json ={
"page": page,
"page_size": page_size,
"similarity_threshold": similarity_threshold,
"vector_similarity_weight": vector_similarity_weight,
"top_k": top_k,
"rerank_id": rerank_id,
"keyword": keyword,
"question": question,
"dataset_ids": dataset_ids,
"documents": document_ids
}
# Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
res = self.post('/retrieval',json=data_json)
res = res.json()
if res.get("code") ==0:
chunks=[]
for chunk_data in res["data"].get("chunks"):
chunk=Chunk(self,chunk_data)
chunks.append(chunk)
return chunks
raise Exception(res.get("message"))
def list_agents(self, page: int = 1, page_size: int = 30, orderby: str = "update_time", desc: bool = True,
id: str | None = None, title: str | None = None) -> list[Agent]:
res = self.get("/agents",{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "title": title})
def retrieve(
self,
dataset_ids,
document_ids=None,
question="",
page=1,
page_size=30,
similarity_threshold=0.2,
vector_similarity_weight=0.3,
top_k=1024,
rerank_id: str | None = None,
keyword: bool = False,
):
if document_ids is None:
document_ids = []
data_json = {
"page": page,
"page_size": page_size,
"similarity_threshold": similarity_threshold,
"vector_similarity_weight": vector_similarity_weight,
"top_k": top_k,
"rerank_id": rerank_id,
"keyword": keyword,
"question": question,
"dataset_ids": dataset_ids,
"documents": document_ids,
}
# Send a POST request to the backend service (using requests library as an example, actual implementation may vary)
res = self.post("/retrieval", json=data_json)
res = res.json()
result_list = []
if res.get("code") == 0:
for data in res['data']:
result_list.append(Agent(self, data))
return result_list
raise Exception(res["message"])
chunks = []
for chunk_data in res["data"].get("chunks"):
chunk = Chunk(self, chunk_data)
chunks.append(chunk)
return chunks
raise Exception(res.get("message"))

View File

@ -1,36 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from ragflow_sdk import RAGFlow, Agent
from common import HOST_ADDRESS
import pytest
@pytest.mark.skip(reason="")
def test_list_agents_with_success(get_api_key_fixture):
API_KEY = get_api_key_fixture
rag = RAGFlow(API_KEY, HOST_ADDRESS)
rag.list_agents()
@pytest.mark.skip(reason="")
def test_converse_with_agent_with_success(get_api_key_fixture):
API_KEY = "ragflow-BkOGNhYjIyN2JiODExZWY5MzVhMDI0Mm"
agent_id = "ebfada2eb2bc11ef968a0242ac120006"
rag = RAGFlow(API_KEY, HOST_ADDRESS)
lang = "Chinese"
file = "How is the weather tomorrow?"
Agent.ask(agent_id=agent_id, rag=rag, lang=lang, file=file)

View File

@ -16,7 +16,6 @@
from ragflow_sdk import RAGFlow
from common import HOST_ADDRESS
import pytest
def test_create_session_with_success(get_api_key_fixture):
@ -111,35 +110,3 @@ def test_list_sessions_with_success(get_api_key_fixture):
assistant.create_session("test_1")
assistant.create_session("test_2")
assistant.list_sessions()
@pytest.mark.skip(reason="")
def test_create_agent_session_with_success(get_api_key_fixture):
API_KEY = "ragflow-BkOGNhYjIyN2JiODExZWY5MzVhMDI0Mm"
rag = RAGFlow(API_KEY, HOST_ADDRESS)
agent = rag.list_agents(id="2e45b5209c1011efa3e90242ac120006")[0]
agent.create_session()
@pytest.mark.skip(reason="")
def test_create_agent_conversation_with_success(get_api_key_fixture):
API_KEY = "ragflow-BkOGNhYjIyN2JiODExZWY5MzVhMDI0Mm"
rag = RAGFlow(API_KEY, HOST_ADDRESS)
agent = rag.list_agents(id="2e45b5209c1011efa3e90242ac120006")[0]
session = agent.create_session()
session.ask("What is this job")
@pytest.mark.skip(reason="")
def test_list_agent_sessions_with_success(get_api_key_fixture):
API_KEY = "ragflow-BkOGNhYjIyN2JiODExZWY5MzVhMDI0Mm"
rag = RAGFlow(API_KEY, HOST_ADDRESS)
agent = rag.list_agents(id="2e45b5209c1011efa3e90242ac120006")[0]
agent.list_sessions()
@pytest.mark.skip(reason="")
def test_delete_session_of_agent_with_success(get_api_key_fixture):
API_KEY = "ragflow-BkOGNhYjIyN2JiODExZWY5MzVhMDI0Mm"
rag = RAGFlow(API_KEY, HOST_ADDRESS)
agent = rag.list_agents(id="2e45b5209c1011efa3e90242ac120006")[0]
agent.delete_sessions(ids=["test_1"])