chore: 添加vLLM相关配置与脚本 (#30)
更新.gitignore文件以忽略vLLM模型目录,新增docker-compose.yml、download_model.py和model_test.py文件,用于配置和测试vLLM服务。删除不再使用的magic_pdf_parser.py文件。
This commit is contained in:
parent
99cc31dc67
commit
dbf6fe0f3b
|
@ -46,4 +46,5 @@ nltk_data/
|
|||
web/public/logo_secret.svg
|
||||
web/public/logo_old.svg
|
||||
web/public/logo.svg
|
||||
web/src/locales/zh.ts
|
||||
web/src/locales/zh.ts
|
||||
vllm/models
|
|
@ -1,141 +0,0 @@
|
|||
import os
|
||||
from io import BytesIO
|
||||
|
||||
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
|
||||
from magic_pdf.data.dataset import PymuDocDataset
|
||||
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
||||
from magic_pdf.config.enums import SupportedPdfParseMethod
|
||||
|
||||
def process_pdf_with_magic(file_content, callback=None):
|
||||
"""
|
||||
使用magic_pdf处理PDF文件
|
||||
|
||||
Args:
|
||||
file_content: PDF文件内容
|
||||
callback: 回调函数,用于更新进度
|
||||
|
||||
Returns:
|
||||
解析后的内容列表
|
||||
"""
|
||||
try:
|
||||
from magic_pdf.processor import PDFProcessor
|
||||
from magic_pdf.extractor import TextExtractor, ImageExtractor
|
||||
|
||||
if callback:
|
||||
callback(0.1, "初始化Magic PDF解析器")
|
||||
|
||||
# 创建临时文件
|
||||
temp_dir = os.path.join(os.getcwd(), "temp")
|
||||
os.makedirs(temp_dir, exist_ok=True)
|
||||
|
||||
temp_pdf_path = os.path.join(temp_dir, "temp.pdf")
|
||||
with open(temp_pdf_path, "wb") as f:
|
||||
f.write(file_content)
|
||||
|
||||
if callback:
|
||||
callback(0.2, "开始解析PDF")
|
||||
|
||||
# 初始化处理器
|
||||
processor = PDFProcessor(temp_pdf_path)
|
||||
|
||||
if callback:
|
||||
callback(0.3, "提取文本内容")
|
||||
|
||||
# 提取文本
|
||||
text_extractor = TextExtractor(processor)
|
||||
text_content = text_extractor.extract()
|
||||
|
||||
if callback:
|
||||
callback(0.5, "提取图片内容")
|
||||
|
||||
# 提取图片
|
||||
image_extractor = ImageExtractor(processor)
|
||||
images = image_extractor.extract()
|
||||
|
||||
if callback:
|
||||
callback(0.7, "组织解析结果")
|
||||
|
||||
# 组织结果
|
||||
content_list = []
|
||||
|
||||
# 添加文本内容
|
||||
for page_num, page_text in enumerate(text_content):
|
||||
content_list.append({
|
||||
"type": "text",
|
||||
"page": page_num + 1,
|
||||
"text": page_text
|
||||
})
|
||||
|
||||
# 添加图片内容
|
||||
for i, img in enumerate(images):
|
||||
content_list.append({
|
||||
"type": "image",
|
||||
"page": img.get("page", i + 1),
|
||||
"image_path": img.get("path", ""),
|
||||
"caption": img.get("caption", "")
|
||||
})
|
||||
|
||||
# 清理临时文件
|
||||
try:
|
||||
os.remove(temp_pdf_path)
|
||||
except:
|
||||
pass
|
||||
|
||||
if callback:
|
||||
callback(1.0, "PDF解析完成")
|
||||
|
||||
return content_list
|
||||
|
||||
except ImportError:
|
||||
# 如果magic_pdf未安装,使用简单的文本提取
|
||||
if callback:
|
||||
callback(0.2, "Magic PDF未安装,使用备用方法")
|
||||
|
||||
try:
|
||||
import PyPDF2
|
||||
|
||||
if callback:
|
||||
callback(0.3, "使用PyPDF2提取文本")
|
||||
|
||||
pdf_reader = PyPDF2.PdfReader(BytesIO(file_content))
|
||||
content_list = []
|
||||
|
||||
for i, page in enumerate(pdf_reader.pages):
|
||||
if callback and i % 5 == 0:
|
||||
progress = 0.3 + (i / len(pdf_reader.pages)) * 0.6
|
||||
callback(progress, f"正在处理第 {i+1}/{len(pdf_reader.pages)} 页")
|
||||
|
||||
text = page.extract_text()
|
||||
if text:
|
||||
content_list.append({
|
||||
"type": "text",
|
||||
"page": i + 1,
|
||||
"text": text
|
||||
})
|
||||
|
||||
if callback:
|
||||
callback(0.9, "文本提取完成")
|
||||
|
||||
return content_list
|
||||
|
||||
except Exception as e:
|
||||
if callback:
|
||||
callback(0.5, f"PDF解析失败: {str(e)}")
|
||||
|
||||
# 最简单的备用方案
|
||||
return [{
|
||||
"type": "text",
|
||||
"page": 1,
|
||||
"text": "无法解析PDF文件内容"
|
||||
}]
|
||||
|
||||
except Exception as e:
|
||||
if callback:
|
||||
callback(0.5, f"PDF解析失败: {str(e)}")
|
||||
|
||||
# 出错时返回空列表
|
||||
return [{
|
||||
"type": "text",
|
||||
"page": 1,
|
||||
"text": f"解析失败: {str(e)}"
|
||||
}]
|
|
@ -0,0 +1,50 @@
|
|||
services:
|
||||
vllm-bge:
|
||||
image: vllm/vllm-openai:latest
|
||||
ipc: host
|
||||
volumes:
|
||||
- ./models/bge-m3:/models
|
||||
command: [
|
||||
"--model", "/models",
|
||||
"--served-model-name", "bge-m3",
|
||||
"--dtype", "float16",
|
||||
"--gpu-memory-utilization", "0.9",
|
||||
]
|
||||
ports:
|
||||
- "8000:8000"
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
networks:
|
||||
- ragflow
|
||||
|
||||
vllm-deepseek:
|
||||
image: vllm/vllm-openai:latest
|
||||
ipc: host
|
||||
volumes:
|
||||
- ./models/DeepSeek-R1-1.5B:/models
|
||||
command: [
|
||||
"--model", "/models",
|
||||
"--served-model-name", "deepseek-r1",
|
||||
"--dtype", "float16",
|
||||
"--tensor-parallel-size", "1",
|
||||
"--max-model-len", "4096"
|
||||
]
|
||||
ports:
|
||||
- "8001:8000"
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
networks:
|
||||
- ragflow
|
||||
|
||||
networks:
|
||||
ragflow:
|
||||
name: docker_ragflow
|
||||
driver: bridge
|
|
@ -0,0 +1,34 @@
|
|||
import os
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
# 1. 设置镜像源(国内加速)
|
||||
# os.environ["HF_ENDPOINT"] = "https://mirrors.tuna.tsinghua.edu.cn/hugging-face/"
|
||||
|
||||
# 2. 定义模型列表(名称 + 下载路径)
|
||||
models_to_download = [
|
||||
{
|
||||
"repo_id": "BAAI/bge-m3", # Embedding 模型
|
||||
"local_dir": os.path.expanduser("./models/bge-m3"),
|
||||
},
|
||||
{
|
||||
"repo_id": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", # LLM 模型
|
||||
"local_dir": os.path.expanduser("./models/DeepSeek-R1-1.5B"),
|
||||
}
|
||||
]
|
||||
|
||||
# 3. 遍历下载所有模型
|
||||
for model in models_to_download:
|
||||
while True: # 断点续传重试机制
|
||||
try:
|
||||
print(f"开始下载模型: {model['repo_id']} 到目录: {model['local_dir']}")
|
||||
snapshot_download(
|
||||
repo_id=model["repo_id"],
|
||||
local_dir=model["local_dir"],
|
||||
resume_download=True, # 启用断点续传
|
||||
force_download=False, # 避免重复下载已有文件
|
||||
token=None, # 如需访问私有模型,替换为你的 token
|
||||
)
|
||||
print(f"模型 {model['repo_id']} 下载完成!")
|
||||
break
|
||||
except Exception as e:
|
||||
print(f"下载失败: {e}, 重试中...")
|
|
@ -0,0 +1,47 @@
|
|||
import requests
|
||||
from openai import OpenAI
|
||||
|
||||
# 测试 embedding 模型 (vllm-bge)
|
||||
def test_embedding(model, text):
|
||||
"""测试嵌入模型"""
|
||||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="1")
|
||||
|
||||
response = client.embeddings.create(
|
||||
model=model, # 使用支持嵌入的模型
|
||||
input=text # 需要嵌入的文本
|
||||
)
|
||||
|
||||
# 打印嵌入响应内容
|
||||
print(f"Embedding response: {response}")
|
||||
|
||||
if response and response.data:
|
||||
print(f"Embedding: {response.data[0].embedding}")
|
||||
else:
|
||||
print("Failed to get embedding.")
|
||||
|
||||
# 测试文本生成模型 (vllm-deepseek)
|
||||
def test_chat(model, prompt):
|
||||
"""测试文本生成模型"""
|
||||
client = OpenAI(base_url="http://localhost:8001/v1", api_key="1")
|
||||
|
||||
response = client.completions.create(
|
||||
model=model,
|
||||
prompt=prompt
|
||||
)
|
||||
|
||||
# 打印生成的文本
|
||||
print(f"Chat response: {response.choices[0].text}")
|
||||
|
||||
def main():
|
||||
# 测试文本生成模型 deepseek-r1
|
||||
prompt = "你好,今天的天气怎么样?"
|
||||
print("Testing vllm-deepseek model for chat...")
|
||||
test_chat("deepseek-r1", prompt)
|
||||
|
||||
# 测试嵌入模型 bge-m3
|
||||
embedding_text = "我喜欢编程,尤其是做AI模型。"
|
||||
print("\nTesting vllm-bge model for embedding...")
|
||||
test_embedding("bge-m3", embedding_text)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue