chore: 添加vLLM相关配置与脚本 (#30)

更新.gitignore文件以忽略vLLM模型目录,新增docker-compose.yml、download_model.py和model_test.py文件,用于配置和测试vLLM服务。删除不再使用的magic_pdf_parser.py文件。
This commit is contained in:
zstar 2025-04-16 17:23:29 +08:00 committed by GitHub
parent 99cc31dc67
commit dbf6fe0f3b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 133 additions and 142 deletions

3
.gitignore vendored
View File

@ -46,4 +46,5 @@ nltk_data/
web/public/logo_secret.svg
web/public/logo_old.svg
web/public/logo.svg
web/src/locales/zh.ts
web/src/locales/zh.ts
vllm/models

View File

@ -1,141 +0,0 @@
import os
from io import BytesIO
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.config.enums import SupportedPdfParseMethod
def process_pdf_with_magic(file_content, callback=None):
"""
使用magic_pdf处理PDF文件
Args:
file_content: PDF文件内容
callback: 回调函数用于更新进度
Returns:
解析后的内容列表
"""
try:
from magic_pdf.processor import PDFProcessor
from magic_pdf.extractor import TextExtractor, ImageExtractor
if callback:
callback(0.1, "初始化Magic PDF解析器")
# 创建临时文件
temp_dir = os.path.join(os.getcwd(), "temp")
os.makedirs(temp_dir, exist_ok=True)
temp_pdf_path = os.path.join(temp_dir, "temp.pdf")
with open(temp_pdf_path, "wb") as f:
f.write(file_content)
if callback:
callback(0.2, "开始解析PDF")
# 初始化处理器
processor = PDFProcessor(temp_pdf_path)
if callback:
callback(0.3, "提取文本内容")
# 提取文本
text_extractor = TextExtractor(processor)
text_content = text_extractor.extract()
if callback:
callback(0.5, "提取图片内容")
# 提取图片
image_extractor = ImageExtractor(processor)
images = image_extractor.extract()
if callback:
callback(0.7, "组织解析结果")
# 组织结果
content_list = []
# 添加文本内容
for page_num, page_text in enumerate(text_content):
content_list.append({
"type": "text",
"page": page_num + 1,
"text": page_text
})
# 添加图片内容
for i, img in enumerate(images):
content_list.append({
"type": "image",
"page": img.get("page", i + 1),
"image_path": img.get("path", ""),
"caption": img.get("caption", "")
})
# 清理临时文件
try:
os.remove(temp_pdf_path)
except:
pass
if callback:
callback(1.0, "PDF解析完成")
return content_list
except ImportError:
# 如果magic_pdf未安装使用简单的文本提取
if callback:
callback(0.2, "Magic PDF未安装使用备用方法")
try:
import PyPDF2
if callback:
callback(0.3, "使用PyPDF2提取文本")
pdf_reader = PyPDF2.PdfReader(BytesIO(file_content))
content_list = []
for i, page in enumerate(pdf_reader.pages):
if callback and i % 5 == 0:
progress = 0.3 + (i / len(pdf_reader.pages)) * 0.6
callback(progress, f"正在处理第 {i+1}/{len(pdf_reader.pages)}")
text = page.extract_text()
if text:
content_list.append({
"type": "text",
"page": i + 1,
"text": text
})
if callback:
callback(0.9, "文本提取完成")
return content_list
except Exception as e:
if callback:
callback(0.5, f"PDF解析失败: {str(e)}")
# 最简单的备用方案
return [{
"type": "text",
"page": 1,
"text": "无法解析PDF文件内容"
}]
except Exception as e:
if callback:
callback(0.5, f"PDF解析失败: {str(e)}")
# 出错时返回空列表
return [{
"type": "text",
"page": 1,
"text": f"解析失败: {str(e)}"
}]

50
vllm/docker-compose.yml Normal file
View File

@ -0,0 +1,50 @@
services:
vllm-bge:
image: vllm/vllm-openai:latest
ipc: host
volumes:
- ./models/bge-m3:/models
command: [
"--model", "/models",
"--served-model-name", "bge-m3",
"--dtype", "float16",
"--gpu-memory-utilization", "0.9",
]
ports:
- "8000:8000"
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
networks:
- ragflow
vllm-deepseek:
image: vllm/vllm-openai:latest
ipc: host
volumes:
- ./models/DeepSeek-R1-1.5B:/models
command: [
"--model", "/models",
"--served-model-name", "deepseek-r1",
"--dtype", "float16",
"--tensor-parallel-size", "1",
"--max-model-len", "4096"
]
ports:
- "8001:8000"
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
networks:
- ragflow
networks:
ragflow:
name: docker_ragflow
driver: bridge

34
vllm/download_model.py Normal file
View File

@ -0,0 +1,34 @@
import os
from huggingface_hub import snapshot_download
# 1. 设置镜像源(国内加速)
# os.environ["HF_ENDPOINT"] = "https://mirrors.tuna.tsinghua.edu.cn/hugging-face/"
# 2. 定义模型列表(名称 + 下载路径)
models_to_download = [
{
"repo_id": "BAAI/bge-m3", # Embedding 模型
"local_dir": os.path.expanduser("./models/bge-m3"),
},
{
"repo_id": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", # LLM 模型
"local_dir": os.path.expanduser("./models/DeepSeek-R1-1.5B"),
}
]
# 3. 遍历下载所有模型
for model in models_to_download:
while True: # 断点续传重试机制
try:
print(f"开始下载模型: {model['repo_id']} 到目录: {model['local_dir']}")
snapshot_download(
repo_id=model["repo_id"],
local_dir=model["local_dir"],
resume_download=True, # 启用断点续传
force_download=False, # 避免重复下载已有文件
token=None, # 如需访问私有模型,替换为你的 token
)
print(f"模型 {model['repo_id']} 下载完成!")
break
except Exception as e:
print(f"下载失败: {e}, 重试中...")

47
vllm/model_test.py Normal file
View File

@ -0,0 +1,47 @@
import requests
from openai import OpenAI
# 测试 embedding 模型 (vllm-bge)
def test_embedding(model, text):
"""测试嵌入模型"""
client = OpenAI(base_url="http://localhost:8000/v1", api_key="1")
response = client.embeddings.create(
model=model, # 使用支持嵌入的模型
input=text # 需要嵌入的文本
)
# 打印嵌入响应内容
print(f"Embedding response: {response}")
if response and response.data:
print(f"Embedding: {response.data[0].embedding}")
else:
print("Failed to get embedding.")
# 测试文本生成模型 (vllm-deepseek)
def test_chat(model, prompt):
"""测试文本生成模型"""
client = OpenAI(base_url="http://localhost:8001/v1", api_key="1")
response = client.completions.create(
model=model,
prompt=prompt
)
# 打印生成的文本
print(f"Chat response: {response.choices[0].text}")
def main():
# 测试文本生成模型 deepseek-r1
prompt = "你好,今天的天气怎么样?"
print("Testing vllm-deepseek model for chat...")
test_chat("deepseek-r1", prompt)
# 测试嵌入模型 bge-m3
embedding_text = "我喜欢编程尤其是做AI模型。"
print("\nTesting vllm-bge model for embedding...")
test_embedding("bge-m3", embedding_text)
if __name__ == "__main__":
main()