# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import re import math from dataclasses import dataclass from rag.settings import TAG_FLD, PAGERANK_FLD from rag.utils import rmSpace from rag.nlp import rag_tokenizer, query import numpy as np from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr def index_name(uid): return f"ragflow_{uid}" class Dealer: def __init__(self, dataStore: DocStoreConnection): self.qryr = query.FulltextQueryer() self.dataStore = dataStore @dataclass class SearchResult: total: int ids: list[str] query_vector: list[float] | None = None field: dict | None = None highlight: dict | None = None aggregation: list | dict | None = None keywords: list[str] | None = None group_docs: list[list] | None = None def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1): qv, _ = emb_mdl.encode_queries(txt) shape = np.array(qv).shape if len(shape) > 1: raise Exception(f"Dealer.get_vector returned array's shape {shape} doesn't match expectation(exact one dimension).") embedding_data = [float(v) for v in qv] vector_column_name = f"q_{len(embedding_data)}_vec" return MatchDenseExpr(vector_column_name, embedding_data, "float", "cosine", topk, {"similarity": similarity}) def get_filters(self, req): condition = dict() for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items(): if key in req and req[key] is not None: condition[field] = req[key] # TODO(yzc): `available_int` is nullable however infinity doesn't support nullable columns. for key in ["knowledge_graph_kwd", "available_int", "entity_kwd", "from_entity_kwd", "to_entity_kwd", "removed_kwd"]: if key in req and req[key] is not None: condition[key] = req[key] return condition def search(self, req, idx_names: str | list[str], kb_ids: list[str], emb_mdl=None, highlight=False, rank_feature: dict | None = None): """ 执行混合检索(全文检索+向量检索) 参数: req: 请求参数字典,包含: - page: 页码 - topk: 返回结果最大数量 - size: 每页大小 - fields: 指定返回字段 - question: 查询问题文本 - similarity: 向量相似度阈值 idx_names: 索引名称或列表 kb_ids: 知识库ID列表 emb_mdl: 嵌入模型,用于向量检索 highlight: 是否返回高亮内容 rank_feature: 排序特征配置 返回: SearchResult对象,包含: - total: 匹配总数 - ids: 匹配的chunk ID列表 - query_vector: 查询向量 - field: 各chunk的字段值 - highlight: 高亮内容 - aggregation: 聚合结果 - keywords: 提取的关键词 """ # 1. 初始化过滤条件和排序规则 filters = self.get_filters(req) orderBy = OrderByExpr() # 2. 处理分页参数 pg = int(req.get("page", 1)) - 1 topk = int(req.get("topk", 1024)) ps = int(req.get("size", topk)) offset, limit = pg * ps, ps # 3. 设置返回字段(默认包含文档名、内容等核心字段) src = req.get( "fields", [ "docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", "position_int", "doc_id", "page_num_int", "top_int", "create_timestamp_flt", "knowledge_graph_kwd", "question_kwd", "question_tks", "available_int", "content_with_weight", PAGERANK_FLD, TAG_FLD, ], ) kwds = set([]) # 初始化关键词集合 # 4. 处理查询问题 qst = req.get("question", "") # 获取查询问题文本 print(f"收到前端问题:{qst}") q_vec = [] # 初始化查询向量(如需向量检索) if not qst: # 4.1 若查询文本为空,执行默认排序检索(通常用于无搜索条件浏览)(注:前端测试检索时会禁止空文本的提交) if req.get("sort"): orderBy.asc("page_num_int") orderBy.asc("top_int") orderBy.desc("create_timestamp_flt") res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids) total = self.dataStore.getTotal(res) logging.debug("Dealer.search TOTAL: {}".format(total)) else: # 4.2 若存在查询文本,进入全文/混合检索流程 highlightFields = ["content_ltks", "title_tks"] if highlight else [] # highlight当前会一直为False,不起作用 # 4.2.1 生成全文检索表达式和关键词 matchText, keywords = self.qryr.question(qst, min_match=0.3) print(f"matchText.matching_text: {matchText.matching_text}") print(f"keywords: {keywords}\n") if emb_mdl is None: # 4.2.2 纯全文检索模式 (未提供向量模型,正常情况不会进入) matchExprs = [matchText] res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids, rank_feature=rank_feature) total = self.dataStore.getTotal(res) logging.debug("Dealer.search TOTAL: {}".format(total)) else: # 4.2.3 混合检索模式(全文+向量) # 生成查询向量 matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1)) q_vec = matchDense.embedding_data # 在返回字段中加入查询向量字段 src.append(f"q_{len(q_vec)}_vec") # 创建融合表达式:设置向量匹配为95%,全文为5% fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"}) # 构建混合查询表达式 matchExprs = [matchText, matchDense, fusionExpr] # 执行混合检索 res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids, rank_feature=rank_feature) total = self.dataStore.getTotal(res) logging.debug("Dealer.search TOTAL: {}".format(total)) print(f"共查询到: {total} 条信息") # print(f"查询信息结果: {res}\n") # 若未找到结果,则尝试降低匹配门槛后重试 if total == 0: if filters.get("doc_id"): # 有特定文档ID时执行无条件查询 res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids) total = self.dataStore.getTotal(res) print(f"针对选中文档,共查询到: {total} 条信息") # print(f"查询信息结果: {res}\n") else: # 否则调整全文和向量匹配参数再次搜索 matchText, _ = self.qryr.question(qst, min_match=0.1) filters.pop("doc_id", None) matchDense.extra_options["similarity"] = 0.17 res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr], orderBy, offset, limit, idx_names, kb_ids, rank_feature=rank_feature) total = self.dataStore.getTotal(res) logging.debug("Dealer.search 2 TOTAL: {}".format(total)) print(f"再次查询,共查询到: {total} 条信息") # print(f"查询信息结果: {res}\n") # 4.3 处理关键词(对关键词进行更细粒度的切词) for k in keywords: kwds.add(k) for kk in rag_tokenizer.fine_grained_tokenize(k).split(): if len(kk) < 2: continue if kk in kwds: continue kwds.add(kk) # 5. 提取检索结果中的ID、字段、聚合和高亮信息 logging.debug(f"TOTAL: {total}") ids = self.dataStore.getChunkIds(res) # 提取匹配chunk的ID keywords = list(kwds) # 转为列表格式返回 highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight") # 获取高亮内容 aggs = self.dataStore.getAggregation(res, "docnm_kwd") # 执行基于文档名的聚合分析 return self.SearchResult(total=total, ids=ids, query_vector=q_vec, aggregation=aggs, highlight=highlight, field=self.dataStore.getFields(res, src), keywords=keywords) @staticmethod def trans2floats(txt): return [float(t) for t in txt.split("\t")] def insert_citations(self, answer, chunks, chunk_v, embd_mdl, tkweight=0.1, vtweight=0.9): assert len(chunks) == len(chunk_v) if not chunks: return answer, set([]) pieces = re.split(r"(```)", answer) if len(pieces) >= 3: i = 0 pieces_ = [] while i < len(pieces): if pieces[i] == "```": st = i i += 1 while i < len(pieces) and pieces[i] != "```": i += 1 if i < len(pieces): i += 1 pieces_.append("".join(pieces[st:i]) + "\n") else: pieces_.extend(re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i])) i += 1 pieces = pieces_ else: pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer) for i in range(1, len(pieces)): if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]): pieces[i - 1] += pieces[i][0] pieces[i] = pieces[i][1:] idx = [] pieces_ = [] for i, t in enumerate(pieces): if len(t) < 5: continue idx.append(i) pieces_.append(t) logging.debug("{} => {}".format(answer, pieces_)) if not pieces_: return answer, set([]) ans_v, _ = embd_mdl.encode(pieces_) for i in range(len(chunk_v)): if len(ans_v[0]) != len(chunk_v[i]): chunk_v[i] = [0.0] * len(ans_v[0]) logging.warning("The dimension of query and chunk do not match: {} vs. {}".format(len(ans_v[0]), len(chunk_v[i]))) assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(len(ans_v[0]), len(chunk_v[0])) chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split() for ck in chunks] cites = {} thr = 0.63 while thr > 0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks: for i, a in enumerate(pieces_): sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i], chunk_v, rag_tokenizer.tokenize(self.qryr.rmWWW(pieces_[i])).split(), chunks_tks, tkweight, vtweight) mx = np.max(sim) * 0.99 logging.debug("{} SIM: {}".format(pieces_[i], mx)) if mx < thr: continue cites[idx[i]] = list(set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4] thr *= 0.8 res = "" seted = set([]) for i, p in enumerate(pieces): res += p if i not in idx: continue if i not in cites: continue for c in cites[i]: assert int(c) < len(chunk_v) for c in cites[i]: if c in seted: continue res += f" ##{c}$$" seted.add(c) return res, seted def _rank_feature_scores(self, query_rfea, search_res): ## For rank feature(tag_fea) scores. rank_fea = [] pageranks = [] for chunk_id in search_res.ids: pageranks.append(search_res.field[chunk_id].get(PAGERANK_FLD, 0)) pageranks = np.array(pageranks, dtype=float) if not query_rfea: return np.array([0 for _ in range(len(search_res.ids))]) + pageranks q_denor = np.sqrt(np.sum([s * s for t, s in query_rfea.items() if t != PAGERANK_FLD])) for i in search_res.ids: nor, denor = 0, 0 for t, sc in eval(search_res.field[i].get(TAG_FLD, "{}")).items(): if t in query_rfea: nor += query_rfea[t] * sc denor += sc * sc if denor == 0: rank_fea.append(0) else: rank_fea.append(nor / np.sqrt(denor) / q_denor) return np.array(rank_fea) * 10.0 + pageranks def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks", rank_feature: dict | None = None): """ 对初步检索到的结果 (sres) 进行重排序。 该方法结合了多种相似度/特征来计算每个结果的新排序分数: 1. 文本相似度 (Token Similarity): 基于查询关键词与文档内容的词元匹配。 2. 向量相似度 (Vector Similarity): 基于查询向量与文档向量的余弦相似度。 3. 排序特征分数 (Rank Feature Scores): 如文档的 PageRank 值或与查询相关的标签特征得分。 最终的排序分数是这几种分数的加权组合(或直接相加)。 Args: sres (SearchResult): 初步检索的结果对象,包含查询向量、文档ID、字段内容等。 query (str): 原始用户查询字符串。 tkweight (float): 文本相似度在混合相似度计算中的权重。 vtweight (float): 向量相似度在混合相似度计算中的权重。 cfield (str): 用于提取主要文本内容以进行词元匹配的字段名,默认为 "content_ltks"。 rank_feature (dict | None): 用于计算排序特征分数的查询侧特征, 例如 {PAGERANK_FLD: 10} 表示 PageRank 权重, 或包含其他标签及其权重的字典。 Returns: tuple[np.ndarray, np.ndarray, np.ndarray]: - sim (np.ndarray): 每个文档的最终重排序分数 (混合相似度 + 排序特征分数)。 - tksim (np.ndarray): 每个文档的纯文本相似度分数。 - vtsim (np.ndarray): 每个文档的纯向量相似度分数。 如果初步检索结果为空 (sres.ids is empty),则返回三个空列表。 """ _, keywords = self.qryr.question(query) vector_size = len(sres.query_vector) vector_column = f"q_{vector_size}_vec" zero_vector = [0.0] * vector_size ins_embd = [] for chunk_id in sres.ids: vector = sres.field[chunk_id].get(vector_column, zero_vector) if isinstance(vector, str): vector = [float(v) for v in vector.split("\t")] ins_embd.append(vector) if not ins_embd: return [], [], [] for i in sres.ids: if isinstance(sres.field[i].get("important_kwd", []), str): sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]] ins_tw = [] for i in sres.ids: content_ltks = sres.field[i][cfield].split() title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t] question_tks = [t for t in sres.field[i].get("question_tks", "").split() if t] important_kwd = sres.field[i].get("important_kwd", []) tks = content_ltks + title_tks * 2 + important_kwd * 5 + question_tks * 6 ins_tw.append(tks) ## For rank feature(tag_fea) scores. rank_fea = self._rank_feature_scores(rank_feature, sres) sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector, ins_embd, keywords, ins_tw, tkweight, vtweight) return sim + rank_fea, tksim, vtsim def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks", rank_feature: dict | None = None): _, keywords = self.qryr.question(query) for i in sres.ids: if isinstance(sres.field[i].get("important_kwd", []), str): sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]] ins_tw = [] for i in sres.ids: content_ltks = sres.field[i][cfield].split() title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t] important_kwd = sres.field[i].get("important_kwd", []) tks = content_ltks + title_tks + important_kwd ins_tw.append(tks) tksim = self.qryr.token_similarity(keywords, ins_tw) vtsim, _ = rerank_mdl.similarity(query, [rmSpace(" ".join(tks)) for tks in ins_tw]) ## For rank feature(tag_fea) scores. rank_fea = self._rank_feature_scores(rank_feature, sres) return tkweight * (np.array(tksim) + rank_fea) + vtweight * vtsim, tksim, vtsim def hybrid_similarity(self, ans_embd, ins_embd, ans, inst): return self.qryr.hybrid_similarity(ans_embd, ins_embd, rag_tokenizer.tokenize(ans).split(), rag_tokenizer.tokenize(inst).split()) def retrieval( self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2, vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, rerank_mdl=None, highlight=False, rank_feature: dict | None = {PAGERANK_FLD: 10}, ): """ 执行检索操作,根据问题查询相关文档片段 参数说明: - question: 用户输入的查询问题 - embd_mdl: 嵌入模型,用于将文本转换为向量 - tenant_ids: 租户ID,可以是字符串或列表 - kb_ids: 知识库ID列表 - page: 当前页码 - page_size: 每页结果数量 - similarity_threshold: 相似度阈值,低于此值的结果将被过滤 - vector_similarity_weight: 向量相似度权重 - top: 检索的最大结果数 - doc_ids: 文档ID列表,用于限制检索范围 - aggs: 是否聚合文档信息 - rerank_mdl: 重排序模型 - highlight: 是否高亮匹配内容 - rank_feature: 排序特征,如PageRank值 返回: 包含检索结果的字典,包括总数、文档片段和文档聚合信息 """ # 初始化结果字典 ranks = {"total": 0, "chunks": [], "doc_aggs": {}} if not question: return ranks # 设置重排序页面限制 RERANK_LIMIT = 64 RERANK_LIMIT = int(RERANK_LIMIT // page_size + ((RERANK_LIMIT % page_size) / (page_size * 1.0) + 0.5)) * page_size if page_size > 1 else 1 if RERANK_LIMIT < 1: RERANK_LIMIT = 1 # 构建检索请求参数 req = { "kb_ids": kb_ids, "doc_ids": doc_ids, "page": math.ceil(page_size * page / RERANK_LIMIT), "size": RERANK_LIMIT, "question": question, "vector": True, "topk": top, "similarity": similarity_threshold, "available_int": 1, } # 处理租户ID格式 if isinstance(tenant_ids, str): tenant_ids = tenant_ids.split(",") # 执行搜索操作 sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight, rank_feature=rank_feature) # 执行重排序操作 if rerank_mdl and sres.total > 0: sim, tsim, vsim = self.rerank_by_model(rerank_mdl, sres, question, 1 - vector_similarity_weight, vector_similarity_weight, rank_feature=rank_feature) else: sim, tsim, vsim = self.rerank(sres, question, 1 - vector_similarity_weight, vector_similarity_weight, rank_feature=rank_feature) # Already paginated in search function idx = np.argsort(sim * -1)[(page - 1) * page_size : page * page_size] dim = len(sres.query_vector) vector_column = f"q_{dim}_vec" zero_vector = [0.0] * dim if doc_ids: similarity_threshold = 0 page_size = 30 sim_np = np.array(sim) filtered_count = (sim_np >= similarity_threshold).sum() ranks["total"] = int(filtered_count) # Convert from np.int64 to Python int otherwise JSON serializable error for i in idx: if sim[i] < similarity_threshold: break if len(ranks["chunks"]) >= page_size: if aggs: continue break id = sres.ids[i] chunk = sres.field[id] dnm = chunk.get("docnm_kwd", "") did = chunk.get("doc_id", "") position_int = chunk.get("position_int", []) d = { "chunk_id": id, "content_ltks": chunk["content_ltks"], "content_with_weight": chunk["content_with_weight"], "doc_id": did, "docnm_kwd": dnm, "kb_id": chunk["kb_id"], "important_kwd": chunk.get("important_kwd", []), "image_id": chunk.get("img_id", ""), "similarity": sim[i], "vector_similarity": vsim[i], "term_similarity": tsim[i], "vector": chunk.get(vector_column, zero_vector), "positions": position_int, "doc_type_kwd": chunk.get("doc_type_kwd", ""), } if highlight and sres.highlight: if id in sres.highlight: d["highlight"] = rmSpace(sres.highlight[id]) else: d["highlight"] = d["content_with_weight"] ranks["chunks"].append(d) if dnm not in ranks["doc_aggs"]: ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0} ranks["doc_aggs"][dnm]["count"] += 1 ranks["doc_aggs"] = [{"doc_name": k, "doc_id": v["doc_id"], "count": v["count"]} for k, v in sorted(ranks["doc_aggs"].items(), key=lambda x: x[1]["count"] * -1)] ranks["chunks"] = ranks["chunks"][:page_size] return ranks def sql_retrieval(self, sql, fetch_size=128, format="json"): tbl = self.dataStore.sql(sql, fetch_size, format) return tbl def chunk_list(self, doc_id: str, tenant_id: str, kb_ids: list[str], max_count=1024, offset=0, fields=["docnm_kwd", "content_with_weight", "img_id"]): condition = {"doc_id": doc_id} res = [] bs = 128 for p in range(offset, max_count, bs): es_res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), p, bs, index_name(tenant_id), kb_ids) dict_chunks = self.dataStore.getFields(es_res, fields) for id, doc in dict_chunks.items(): doc["id"] = id if dict_chunks: res.extend(dict_chunks.values()) if len(dict_chunks.values()) < bs: break return res def all_tags(self, tenant_id: str, kb_ids: list[str], S=1000): if not self.dataStore.indexExist(index_name(tenant_id), kb_ids[0]): return [] res = self.dataStore.search([], [], {}, [], OrderByExpr(), 0, 0, index_name(tenant_id), kb_ids, ["tag_kwd"]) return self.dataStore.getAggregation(res, "tag_kwd") def all_tags_in_portion(self, tenant_id: str, kb_ids: list[str], S=1000): res = self.dataStore.search([], [], {}, [], OrderByExpr(), 0, 0, index_name(tenant_id), kb_ids, ["tag_kwd"]) res = self.dataStore.getAggregation(res, "tag_kwd") total = np.sum([c for _, c in res]) return {t: (c + 1) / (total + S) for t, c in res} def tag_content(self, tenant_id: str, kb_ids: list[str], doc, all_tags, topn_tags=3, keywords_topn=30, S=1000): idx_nm = index_name(tenant_id) match_txt = self.qryr.paragraph(doc["title_tks"] + " " + doc["content_ltks"], doc.get("important_kwd", []), keywords_topn) res = self.dataStore.search([], [], {}, [match_txt], OrderByExpr(), 0, 0, idx_nm, kb_ids, ["tag_kwd"]) aggs = self.dataStore.getAggregation(res, "tag_kwd") if not aggs: return False cnt = np.sum([c for _, c in aggs]) tag_fea = sorted([(a, round(0.1 * (c + 1) / (cnt + S) / max(1e-6, all_tags.get(a, 0.0001)))) for a, c in aggs], key=lambda x: x[1] * -1)[:topn_tags] doc[TAG_FLD] = {a: c for a, c in tag_fea if c > 0} return True def tag_query(self, question: str, tenant_ids: str | list[str], kb_ids: list[str], all_tags, topn_tags=3, S=1000): if isinstance(tenant_ids, str): idx_nms = index_name(tenant_ids) else: idx_nms = [index_name(tid) for tid in tenant_ids] match_txt, _ = self.qryr.question(question, min_match=0.0) res = self.dataStore.search([], [], {}, [match_txt], OrderByExpr(), 0, 0, idx_nms, kb_ids, ["tag_kwd"]) aggs = self.dataStore.getAggregation(res, "tag_kwd") if not aggs: return {} cnt = np.sum([c for _, c in aggs]) tag_fea = sorted([(a, round(0.1 * (c + 1) / (cnt + S) / max(1e-6, all_tags.get(a, 0.0001)))) for a, c in aggs], key=lambda x: x[1] * -1)[:topn_tags] return {a.replace(".", "_"): max(1, c) for a, c in tag_fea}