# # Copyright 2024 The InfiniFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import binascii import time from functools import partial import re from copy import deepcopy from timeit import default_timer as timer from agentic_reasoning import DeepResearcher from api.db import LLMType, ParserType, StatusEnum from api.db.db_models import Dialog, DB from api.db.services.common_service import CommonService from api.db.services.knowledgebase_service import KnowledgebaseService from api.db.services.llm_service import TenantLLMService, LLMBundle from api import settings from rag.app.resume import forbidden_select_fields4resume from rag.app.tag import label_question from rag.nlp.search import index_name from rag.prompts import kb_prompt, message_fit_in, llm_id2llm_type, keyword_extraction, full_question, chunks_format, citation_prompt from rag.utils import rmSpace, num_tokens_from_string from rag.utils.tavily_conn import Tavily class DialogService(CommonService): model = Dialog @classmethod @DB.connection_context() def get_list(cls, tenant_id, page_number, items_per_page, orderby, desc, id, name): chats = cls.model.select() if id: chats = chats.where(cls.model.id == id) if name: chats = chats.where(cls.model.name == name) chats = chats.where((cls.model.tenant_id == tenant_id) & (cls.model.status == StatusEnum.VALID.value)) if desc: chats = chats.order_by(cls.model.getter_by(orderby).desc()) else: chats = chats.order_by(cls.model.getter_by(orderby).asc()) chats = chats.paginate(page_number, items_per_page) return list(chats.dicts()) def chat_solo(dialog, messages, stream=True): if llm_id2llm_type(dialog.llm_id) == "image2text": chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id) else: chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id) prompt_config = dialog.prompt_config tts_mdl = None if prompt_config.get("tts"): tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS) msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"] if stream: last_ans = "" for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting): answer = ans delta_ans = ans[len(last_ans) :] if num_tokens_from_string(delta_ans) < 16: continue last_ans = answer yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()} if delta_ans: yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()} else: answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting) user_content = msg[-1].get("content", "[content not available]") logging.debug("User: {}|Assistant: {}".format(user_content, answer)) yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()} def chat(dialog, messages, stream=True, **kwargs): assert messages[-1]["role"] == "user", "The last content of this conversation is not from user." if not dialog.kb_ids: for ans in chat_solo(dialog, messages, stream): yield ans return chat_start_ts = timer() if llm_id2llm_type(dialog.llm_id) == "image2text": llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id) else: llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id) max_tokens = llm_model_config.get("max_tokens", 8192) check_llm_ts = timer() kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids) embedding_list = list(set([kb.embd_id for kb in kbs])) if len(embedding_list) != 1: yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []} return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []} embedding_model_name = embedding_list[0] retriever = settings.retrievaler questions = [m["content"] for m in messages if m["role"] == "user"][-3:] attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None if "doc_ids" in messages[-1]: attachments = messages[-1]["doc_ids"] create_retriever_ts = timer() embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_model_name) if not embd_mdl: raise LookupError("Embedding model(%s) not found" % embedding_model_name) bind_embedding_ts = timer() if llm_id2llm_type(dialog.llm_id) == "image2text": chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id) else: chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id) bind_llm_ts = timer() prompt_config = dialog.prompt_config field_map = KnowledgebaseService.get_field_map(dialog.kb_ids) tts_mdl = None if prompt_config.get("tts"): tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS) # try to use sql if field mapping is good to go if field_map: logging.debug("Use SQL to retrieval:{}".format(questions[-1])) ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True)) if ans: yield ans return for p in prompt_config["parameters"]: if p["key"] == "knowledge": continue if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"]) if p["key"] not in kwargs: prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ") # 不再使用多轮对话优化 # if len(questions) > 1 and prompt_config.get("refine_multiturn"): # questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)] # else: # questions = questions[-1:] questions = questions[-1:] refine_question_ts = timer() rerank_mdl = None if dialog.rerank_id: rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id) bind_reranker_ts = timer() generate_keyword_ts = bind_reranker_ts thought = "" kbinfos = {"total": 0, "chunks": [], "doc_aggs": []} if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]: knowledges = [] else: if prompt_config.get("keyword", False): questions[-1] += keyword_extraction(chat_mdl, questions[-1]) generate_keyword_ts = timer() tenant_ids = list(set([kb.tenant_id for kb in kbs])) knowledges = [] # 不再使用推理 # if prompt_config.get("reasoning", False): # reasoner = DeepResearcher(chat_mdl, # prompt_config, # partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3)) # for think in reasoner.thinking(kbinfos, " ".join(questions)): # if isinstance(think, str): # thought = think # knowledges = [t for t in think.split("\n") if t] # elif stream: # yield think # else: # kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n, # dialog.similarity_threshold, # dialog.vector_similarity_weight, # doc_ids=attachments, # top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl, # rank_feature=label_question(" ".join(questions), kbs) # ) # if prompt_config.get("tavily_api_key"): # tav = Tavily(prompt_config["tavily_api_key"]) # tav_res = tav.retrieve_chunks(" ".join(questions)) # kbinfos["chunks"].extend(tav_res["chunks"]) # kbinfos["doc_aggs"].extend(tav_res["doc_aggs"]) # if prompt_config.get("use_kg"): # ck = settings.kg_retrievaler.retrieval(" ".join(questions), # tenant_ids, # dialog.kb_ids, # embd_mdl, # LLMBundle(dialog.tenant_id, LLMType.CHAT)) # if ck["content_with_weight"]: # kbinfos["chunks"].insert(0, ck) # knowledges = kb_prompt(kbinfos, max_tokens) kbinfos = retriever.retrieval( " ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n, dialog.similarity_threshold, dialog.vector_similarity_weight, doc_ids=attachments, top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl, rank_feature=label_question(" ".join(questions), kbs), ) knowledges = kb_prompt(kbinfos, max_tokens) logging.debug("{}->{}".format(" ".join(questions), "\n->".join(knowledges))) retrieval_ts = timer() if not knowledges and prompt_config.get("empty_response"): empty_res = prompt_config["empty_response"] yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)} return {"answer": prompt_config["empty_response"], "reference": kbinfos} kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges) gen_conf = dialog.llm_setting msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}] prompt4citation = "" if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)): prompt4citation = citation_prompt() # 过滤掉 system 角色的消息(因为前面已经单独处理了系统消息) msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])} for m in messages if m["role"] != "system"]) used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.95)) assert len(msg) >= 2, f"message_fit_in has bug: {msg}" prompt = msg[0]["content"] if "max_tokens" in gen_conf: gen_conf["max_tokens"] = min(gen_conf["max_tokens"], max_tokens - used_token_count) def decorate_answer(answer): nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions refs = [] image_markdowns = [] # 用于存储图片的 Markdown 字符串 ans = answer.split("") think = "" if len(ans) == 2: think = ans[0] + "" answer = ans[1] if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)): answer = re.sub(r"##[ij]\$\$", "", answer, flags=re.DOTALL) cited_chunk_indices = set() # 用于存储被引用的 chunk 索引 if not re.search(r"##[0-9]+\$\$", answer): answer, idx = retriever.insert_citations( answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=1 - dialog.vector_similarity_weight, vtweight=dialog.vector_similarity_weight, ) cited_chunk_indices = idx # 获取 insert_citations 返回的索引 else: idx = set([]) for r in re.finditer(r"##([0-9]+)\$\$", answer): i = int(r.group(1)) if i < len(kbinfos["chunks"]): idx.add(i) cited_chunk_indices = idx # 获取从 ##...$$ 标记中提取的索引 # 根据引用的 chunk 索引提取图像信息并生成 Markdown cited_doc_ids = set() processed_image_urls = set() # 避免重复添加同一张图片 print(f"DEBUG: cited_chunk_indices = {cited_chunk_indices}") for i in cited_chunk_indices: i_int = int(i) if i_int < len(kbinfos["chunks"]): chunk = kbinfos["chunks"][i_int] cited_doc_ids.add(chunk["doc_id"]) print(f"DEBUG: chunk = {chunk}") # 检查 chunk 是否有关联的 image_id (URL) 且未被处理过 print(f"DEBUG: chunk_id={chunk.get('chunk_id', i_int)}, image_id={chunk.get('image_id')}") img_url = chunk.get("image_id") if img_url and img_url not in processed_image_urls: # 生成 Markdown 字符串,alt text 可以简单设为 "image" 或 chunk ID alt_text = f"image_chunk_{chunk.get('chunk_id', i_int)}" image_markdowns.append(f"\n![{alt_text}]({img_url})") processed_image_urls.add(img_url) # 标记为已处理 idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx]) recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx] if not recall_docs: recall_docs = kbinfos["doc_aggs"] kbinfos["doc_aggs"] = recall_docs refs = deepcopy(kbinfos) for c in refs["chunks"]: if c.get("vector"): del c["vector"] # 将图片的 Markdown 字符串追加到回答末尾 if image_markdowns: answer += "".join(image_markdowns) if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'" finish_chat_ts = timer() total_time_cost = (finish_chat_ts - chat_start_ts) * 1000 check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000 create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000 bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000 bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000 refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000 bind_reranker_time_cost = (bind_reranker_ts - refine_question_ts) * 1000 generate_keyword_time_cost = (generate_keyword_ts - bind_reranker_ts) * 1000 retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000 generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000 prompt += "\n\n### Query:\n%s" % " ".join(questions) prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms" return {"answer": think + answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()} if stream: last_ans = "" # 记录上一次返回的完整回答 answer = "" # 当前累计的完整回答 for ans in chat_mdl.chat_streamly(prompt + prompt4citation, msg[1:], gen_conf): # 如果存在思考过程(thought),移除相关标记 if thought: ans = re.sub(r".*", "", ans, flags=re.DOTALL) answer = ans # 计算新增的文本片段(delta) delta_ans = ans[len(last_ans) :] # 如果新增token太少(小于16),跳过本次返回(避免频繁发送小片段) if num_tokens_from_string(delta_ans) < 16: continue last_ans = answer # 返回当前累计回答(包含思考过程)+新增片段) yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} delta_ans = answer[len(last_ans) :] if delta_ans: yield {"answer": thought + answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)} yield decorate_answer(thought + answer) else: answer = chat_mdl.chat(prompt + prompt4citation, msg[1:], gen_conf) user_content = msg[-1].get("content", "[content not available]") logging.debug("User: {}|Assistant: {}".format(user_content, answer)) res = decorate_answer(answer) res["audio_binary"] = tts(tts_mdl, answer) yield res def use_sql(question, field_map, tenant_id, chat_mdl, quota=True): sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question." user_prompt = """ Table name: {}; Table of database fields are as follows: {} Question are as follows: {} Please write the SQL, only SQL, without any other explanations or text. """.format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question) tried_times = 0 def get_table(): nonlocal sys_prompt, user_prompt, question, tried_times sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {"temperature": 0.06}) sql = re.sub(r".*", "", sql, flags=re.DOTALL) logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}") sql = re.sub(r"[\r\n]+", " ", sql.lower()) sql = re.sub(r".*select ", "select ", sql.lower()) sql = re.sub(r" +", " ", sql) sql = re.sub(r"([;;]|```).*", "", sql) if sql[: len("select ")] != "select ": return None, None if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()): if sql[: len("select *")] != "select *": sql = "select doc_id,docnm_kwd," + sql[6:] else: flds = [] for k in field_map.keys(): if k in forbidden_select_fields4resume: continue if len(flds) > 11: break flds.append(k) sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:] logging.debug(f"{question} get SQL(refined): {sql}") tried_times += 1 return settings.retrievaler.sql_retrieval(sql, format="json"), sql tbl, sql = get_table() if tbl is None: return None if tbl.get("error") and tried_times <= 2: user_prompt = """ Table name: {}; Table of database fields are as follows: {} Question are as follows: {} Please write the SQL, only SQL, without any other explanations or text. The SQL error you provided last time is as follows: {} Error issued by database as follows: {} Please correct the error and write SQL again, only SQL, without any other explanations or text. """.format(index_name(tenant_id), "\n".join([f"{k}: {v}" for k, v in field_map.items()]), question, sql, tbl["error"]) tbl, sql = get_table() logging.debug("TRY it again: {}".format(sql)) logging.debug("GET table: {}".format(tbl)) if tbl.get("error") or len(tbl["rows"]) == 0: return None docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"]) doc_name_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"]) column_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)] # compose Markdown table columns = ( "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], tbl["columns"][i]["name"])) for i in column_idx]) + ("|Source|" if docid_idx and docid_idx else "|") ) line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + ("|------|" if docid_idx and docid_idx else "") rows = ["|" + "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") + "|" for r in tbl["rows"]] rows = [r for r in rows if re.sub(r"[ |]+", "", r)] if quota: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)]) else: rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)]) rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows) if not docid_idx or not doc_name_idx: logging.warning("SQL missing field: " + sql) return {"answer": "\n".join([columns, line, rows]), "reference": {"chunks": [], "doc_aggs": []}, "prompt": sys_prompt} docid_idx = list(docid_idx)[0] doc_name_idx = list(doc_name_idx)[0] doc_aggs = {} for r in tbl["rows"]: if r[docid_idx] not in doc_aggs: doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0} doc_aggs[r[docid_idx]]["count"] += 1 return { "answer": "\n".join([columns, line, rows]), "reference": { "chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]], "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()], }, "prompt": sys_prompt, } def tts(tts_mdl, text): if not tts_mdl or not text: return bin = b"" for chunk in tts_mdl.tts(text): bin += chunk return binascii.hexlify(bin).decode("utf-8") def ask(question, kb_ids, tenant_id): """ 处理用户搜索请求,从知识库中检索相关信息并生成回答 参数: question (str): 用户的问题或查询 kb_ids (list): 知识库ID列表,指定要搜索的知识库 tenant_id (str): 租户ID,用于权限控制和资源隔离 流程: 1. 获取指定知识库的信息 2. 确定使用的嵌入模型 3. 根据知识库类型选择检索器(普通检索器或知识图谱检索器) 4. 初始化嵌入模型和聊天模型 5. 执行检索操作获取相关文档片段 6. 格式化知识库内容作为上下文 7. 构建系统提示词 8. 生成回答并添加引用标记 9. 流式返回生成的回答 返回: generator: 生成器对象,产生包含回答和引用信息的字典 """ kbs = KnowledgebaseService.get_by_ids(kb_ids) embedding_list = list(set([kb.embd_id for kb in kbs])) is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs]) retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler # 初始化嵌入模型,用于将文本转换为向量表示 embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0]) # 初始化聊天模型,用于生成回答 chat_mdl = LLMBundle(tenant_id, LLMType.CHAT) # 获取聊天模型的最大token长度,用于控制上下文长度 max_tokens = chat_mdl.max_length # 获取所有知识库的租户ID并去重 tenant_ids = list(set([kb.tenant_id for kb in kbs])) # 调用检索器检索相关文档片段 kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False, rank_feature=label_question(question, kbs)) # 将检索结果格式化为提示词,并确保不超过模型最大token限制 knowledges = kb_prompt(kbinfos, max_tokens) prompt = """ 角色:你是一个聪明的助手。 任务:总结知识库中的信息并回答用户的问题。 要求与限制: - 绝不要捏造内容,尤其是数字。 - 如果知识库中的信息与用户问题无关,**只需回答:对不起,未提供相关信息。 - 使用Markdown格式进行回答。 - 使用用户提问所用的语言作答。 - 绝不要捏造内容,尤其是数字。 ### 来自知识库的信息 %s 以上是来自知识库的信息。 """ % "\n".join(knowledges) msg = [{"role": "user", "content": question}] # 生成完成后添加回答中的引用标记 def decorate_answer(answer): nonlocal knowledges, kbinfos, prompt answer, idx = retriever.insert_citations(answer, [ck["content_ltks"] for ck in kbinfos["chunks"]], [ck["vector"] for ck in kbinfos["chunks"]], embd_mdl, tkweight=0.7, vtweight=0.3) idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx]) recall_docs = [d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx] if not recall_docs: recall_docs = kbinfos["doc_aggs"] kbinfos["doc_aggs"] = recall_docs refs = deepcopy(kbinfos) for c in refs["chunks"]: if c.get("vector"): del c["vector"] if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0: answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'" refs["chunks"] = chunks_format(refs) return {"answer": answer, "reference": refs} answer = "" for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}): answer = ans yield {"answer": answer, "reference": {}} yield decorate_answer(answer)