|
||
---|---|---|
.. | ||
README.md |
README.md
本项目采用了和ragflow一致的api接口,python的api接口如下。
http接口可参考原文档:https://github.com/infiniflow/ragflow/blob/main/docs/references/http_api_reference.md
目录
-
- 依赖安装/密钥准备
-
- 创建聊天(Create chat completion)
-
- 知识库管理(DATASET MANAGEMENT)
- 3.1 创建知识库(Create dataset)
- 3.2 查询知识库(List datasets)
- 3.3 删除知识库(Delete datasets)
- 3.4 更新知识库配置(Update dataset)
-
- 文件管理 (FILE MANAGEMENT WITHIN DATASET)
- 4.1 上传文件(Upload documents)
- 4.2 更新文件配置(Upload documents)
- 4.3 删除文件(Delete documents)
-
- 块管理(CHUNK MANAGEMENT WITHIN DATASET)
- 5.1 添加块(Add chunk)
- 5.2 查询块(List chunks)
-
- 聊天助手管理(CHAT ASSISTANT MANAGEMENT)
- 6.1 创建聊天助手(Create chat assistant)
- 6.2 更新聊天助手配置(Update chat assistant)
- 6.3 删除聊天助手(Delete chat assistants)
- 6.4 查询聊天助手(List chat assistants)
-
- 会话管理(SESSION MANAGEMENT)
- 7.1 创建会话(Create session with chat assistant)
- 7.2 更新会话信息(Update chat assistant's session)
- 7.3 查询会话历史记录(List chat assistant's sessions)
- 7.4 删除会话(Delete chat assistant's sessions)
- 7.5 交互会话(Converse with chat assistant)
1. 依赖安装/密钥准备
使用python调用API接口,需要安装ragflow-sdk
依赖,可用pip进行安装:
pip install ragflow-sdk
之后,需要在API菜单中,创建一个API KEY
,复制该值,后续要用到。
2. 创建聊天(Create chat completion)
通过OpenAI的API为选择助理进行聊天。
这里的示例需要修改三个值:
- model:模型名称
- api_key:替换成自己的api_key,后文同理
- base_url:最后面一串为具体助手的
dialogId
,可直接从url中查看获取
可选参数:stream,用于指定是否采用流式输出
from openai import OpenAI
model = "deepseek-r1:1.5b"
client = OpenAI(api_key="ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm", base_url=f"http://localhost/api/v1/chats_openai/ec69b3f4fbeb11ef862c0242ac120002")
completion = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "你是一个乐于助人的助手"},
{"role": "user", "content": "你是谁?"},
],
stream=True
)
stream = True
if stream:
for chunk in completion:
print(chunk)
else:
print(completion.choices[0].message.content)
3. 知识库管理(DATASET MANAGEMENT)
3.1 创建知识库(Create dataset)
创建一个名称为kb_1
的知识库
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.create_dataset(name="kb_1")
3.2 查询知识库(List datasets)
根据名称,查询知识库信息
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
# 查询所有知识库
for dataset in rag_object.list_datasets():
print(dataset)
# 根据name查询某一知识库
dataset = rag_object.list_datasets(name = "kb_1")
print(dataset[0])
3.3 删除知识库(Delete datasets)
删除指定知识库
只能根据知识库id进行删除,无name接口,id通过上一步查询得到
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
rag_object.delete_datasets(ids = ["50f80d7c099111f0ad0e0242ac120006"])
3.4 更新知识库配置(Update dataset)
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.update({"chunk_method":"manual"})
4. 文件管理 (FILE MANAGEMENT WITHIN DATASET)
4.1 上传文件(Upload documents)
上传文件进入到kb_1
的知识库
两个主要参数:
- display_name:文件名
- blob:文件的二进制内容
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.upload_documents([{"display_name": "1.txt", "blob": open('1.txt',"rb").read()}])
4.2 更新文件配置(Upload documents)
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
doc = dataset.list_documents(id="7c5ea41409f811f0b9270242ac120006")
doc = doc[0]
doc.update({"parser_config": {"chunk_token_count": 256}})
4.3 删除文件(Delete documents)
根据documents id,删除文件
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.delete_documents(ids=["7c5ea41409f811f0b9270242ac120006"])
5. 块管理(CHUNK MANAGEMENT WITHIN DATASET)
5.1 添加块(Add chunk)
增加一个分块,content为具体chunk的内容
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
doc = dataset.list_documents(id="91bd7c5e0a0711f08a730242ac120006")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
5.2 查询块(List chunks)
查询kb_1
中所有块的具体信息
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
docs = dataset.list_documents(keywords="1", page=1, page_size=12)
for chunk in docs[0].list_chunks(keywords="", page=1, page_size=12):
print(chunk)
6. 聊天助手管理(CHAT ASSISTANT MANAGEMENT)
6.1 创建聊天助手(Create chat assistant)
创建一个名为"Miss R"
的聊天助手
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
datasets = rag_object.list_datasets(name="kb_1")
dataset_ids = []
for dataset in datasets:
dataset_ids.append(dataset.id)
assistant = rag_object.create_chat("Miss R", dataset_ids=dataset_ids)
6.2 更新聊天助手配置(Update chat assistant)
更新聊天助手的各种配置,可选项参考原文档
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
datasets = rag_object.list_datasets(name="kb_1")
dataset_id = datasets[0].id
assistant = rag_object.create_chat("Miss R2", dataset_ids=[dataset_id])
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
6.3 删除聊天助手(Delete chat assistants)
根据dialogId,删除指定助手
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
rag_object.delete_chats(ids=["a39fa5480a2d11f082850242ac120006"])
6.4 查询聊天助手(List chat assistants)
查询所有聊天助手信息
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
for assistant in rag_object.list_chats():
print(assistant)
7. 会话管理(SESSION MANAGEMENT)
7.1 创建会话(Create session with chat assistant)
选择Miss R
助理,创建新会话
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
7.2 更新会话信息(Update chat assistant's session)
创建完会话,并更新了会话名称
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
7.3 查询会话历史记录(List chat assistant's sessions)
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
print(session)
7.4 删除会话(Delete chat assistant's sessions)
根据conversationId,删除某一会话
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["0ed10bce0a3111f0a3240242ac120006"])
7.5 交互会话(Converse with chat assistant)
指定某一助手,进行交互提问
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
print("\n==================== Miss R =====================\n")
print("Hello. What can I do for you?")
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in session.ask(question, stream=True):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content