50 lines
1.4 KiB
Python
50 lines
1.4 KiB
Python
import requests
|
||
from openai import OpenAI
|
||
|
||
# 测试 embedding 模型 (vllm-bge)
|
||
def test_embedding(model, text):
|
||
"""测试嵌入模型"""
|
||
client = OpenAI(base_url="http://localhost:8000/v1", api_key="1")
|
||
|
||
response = client.embeddings.create(
|
||
model=model, # 使用支持嵌入的模型
|
||
input=text # 需要嵌入的文本
|
||
)
|
||
|
||
# 打印嵌入响应内容
|
||
# print(f"Embedding response: {response}")
|
||
|
||
result = response.data[0].embedding
|
||
|
||
if response and response.data:
|
||
print(len(result))
|
||
else:
|
||
print("Failed to get embedding.")
|
||
|
||
# 测试文本生成模型 (vllm-deepseek)
|
||
def test_chat(model, prompt):
|
||
"""测试文本生成模型"""
|
||
client = OpenAI(base_url="http://localhost:8001/v1", api_key="1")
|
||
|
||
response = client.completions.create(
|
||
model=model,
|
||
prompt=prompt
|
||
)
|
||
|
||
# 打印生成的文本
|
||
print(f"Chat response: {response.choices[0].text}")
|
||
|
||
def main():
|
||
# 测试文本生成模型 deepseek-r1
|
||
prompt = "你好,今天的天气怎么样?"
|
||
print("Testing vllm-deepseek model for chat...")
|
||
test_chat("deepseek-r1", prompt)
|
||
|
||
# 测试嵌入模型 bge-m3
|
||
embedding_text = "我喜欢编程,尤其是做AI模型。"
|
||
print("\nTesting vllm-bge model for embedding...")
|
||
test_embedding("bge-m3", embedding_text)
|
||
|
||
if __name__ == "__main__":
|
||
main()
|