341 lines
14 KiB
Python
341 lines
14 KiB
Python
#
|
||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
|
||
import logging
|
||
import json
|
||
import re
|
||
from rag.utils.doc_store_conn import MatchTextExpr
|
||
|
||
from rag.nlp import rag_tokenizer, term_weight, synonym
|
||
|
||
|
||
class FulltextQueryer:
|
||
def __init__(self):
|
||
self.tw = term_weight.Dealer()
|
||
self.syn = synonym.Dealer()
|
||
self.query_fields = [
|
||
"title_tks^10",
|
||
"title_sm_tks^5",
|
||
"important_kwd^30",
|
||
"important_tks^20",
|
||
"question_tks^20",
|
||
"content_ltks^2",
|
||
"content_sm_ltks",
|
||
]
|
||
|
||
@staticmethod
|
||
def subSpecialChar(line):
|
||
return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|\+~\^])", r"\\\1", line).strip()
|
||
|
||
@staticmethod
|
||
def isChinese(line):
|
||
arr = re.split(r"[ \t]+", line)
|
||
if len(arr) <= 3:
|
||
return True
|
||
e = 0
|
||
for t in arr:
|
||
if not re.match(r"[a-zA-Z]+$", t):
|
||
e += 1
|
||
return e * 1.0 / len(arr) >= 0.7
|
||
|
||
@staticmethod
|
||
def rmWWW(txt):
|
||
"""
|
||
移除文本中的WWW(WHAT、WHO、WHERE等疑问词)。
|
||
|
||
本函数通过一系列正则表达式模式来识别并替换文本中的疑问词,以简化文本或为后续处理做准备。
|
||
参数:
|
||
- txt: 待处理的文本字符串。
|
||
|
||
返回:
|
||
- 处理后的文本字符串,如果所有疑问词都被移除且文本为空,则返回原始文本。
|
||
"""
|
||
patts = [
|
||
(
|
||
r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀|谁|哪位|哪个)是*",
|
||
"",
|
||
),
|
||
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
|
||
(
|
||
r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down|of|to|or|and|if) ",
|
||
" ",
|
||
),
|
||
]
|
||
otxt = txt
|
||
for r, p in patts:
|
||
txt = re.sub(r, p, txt, flags=re.IGNORECASE)
|
||
if not txt:
|
||
txt = otxt
|
||
return txt
|
||
|
||
@staticmethod
|
||
def add_space_between_eng_zh(txt):
|
||
"""
|
||
在英文和中文之间添加空格。
|
||
|
||
该函数通过正则表达式匹配文本中英文和中文相邻的情况,并在它们之间插入空格。
|
||
这样做可以改善文本的可读性,特别是在混合使用英文和中文时。
|
||
|
||
参数:
|
||
txt (str): 需要处理的文本字符串。
|
||
|
||
返回:
|
||
str: 处理后的文本字符串,其中英文和中文之间添加了空格。
|
||
"""
|
||
# (ENG/ENG+NUM) + ZH
|
||
txt = re.sub(r"([A-Za-z]+[0-9]+)([\u4e00-\u9fa5]+)", r"\1 \2", txt)
|
||
# ENG + ZH
|
||
txt = re.sub(r"([A-Za-z])([\u4e00-\u9fa5]+)", r"\1 \2", txt)
|
||
# ZH + (ENG/ENG+NUM)
|
||
txt = re.sub(r"([\u4e00-\u9fa5]+)([A-Za-z]+[0-9]+)", r"\1 \2", txt)
|
||
txt = re.sub(r"([\u4e00-\u9fa5]+)([A-Za-z])", r"\1 \2", txt)
|
||
return txt
|
||
|
||
def question(self, txt, tbl="qa", min_match: float = 0.6):
|
||
"""
|
||
根据输入的文本生成查询表达式,用于在数据库中匹配相关问题。
|
||
|
||
参数:
|
||
- txt (str): 输入的文本。
|
||
- tbl (str): 数据表名,默认为"qa"。
|
||
- min_match (float): 最小匹配度,默认为0.6。
|
||
|
||
返回:
|
||
- MatchTextExpr: 生成的查询表达式对象。
|
||
- keywords (list): 提取的关键词列表。
|
||
"""
|
||
txt = FulltextQueryer.add_space_between_eng_zh(txt) # 在英文和中文之间添加空格
|
||
# 使用正则表达式替换特殊字符为单个空格,并将文本转换为简体中文和小写
|
||
txt = re.sub(
|
||
r"[ :|\r\n\t,,。??/`!!&^%%()\[\]{}<>]+",
|
||
" ",
|
||
rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())),
|
||
).strip()
|
||
otxt = txt
|
||
txt = FulltextQueryer.rmWWW(txt)
|
||
|
||
# 如果文本不是中文,则进行英文处理
|
||
if not self.isChinese(txt):
|
||
txt = FulltextQueryer.rmWWW(txt)
|
||
tks = rag_tokenizer.tokenize(txt).split()
|
||
keywords = [t for t in tks if t]
|
||
tks_w = self.tw.weights(tks, preprocess=False)
|
||
tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
|
||
tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk]
|
||
tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
|
||
tks_w = [(tk.strip(), w) for tk, w in tks_w if tk.strip()]
|
||
syns = []
|
||
for tk, w in tks_w[:256]:
|
||
syn = self.syn.lookup(tk)
|
||
syn = rag_tokenizer.tokenize(" ".join(syn)).split()
|
||
keywords.extend(syn)
|
||
syn = ['"{}"^{:.4f}'.format(s, w / 4.0) for s in syn if s.strip()]
|
||
syns.append(" ".join(syn))
|
||
|
||
q = ["({}^{:.4f}".format(tk, w) + " {})".format(syn) for (tk, w), syn in zip(tks_w, syns) if tk and not re.match(r"[.^+\(\)-]", tk)]
|
||
for i in range(1, len(tks_w)):
|
||
left, right = tks_w[i - 1][0].strip(), tks_w[i][0].strip()
|
||
if not left or not right:
|
||
continue
|
||
q.append(
|
||
'"%s %s"^%.4f'
|
||
% (
|
||
tks_w[i - 1][0],
|
||
tks_w[i][0],
|
||
max(tks_w[i - 1][1], tks_w[i][1]) * 2,
|
||
)
|
||
)
|
||
if not q:
|
||
q.append(txt)
|
||
query = " ".join(q)
|
||
return MatchTextExpr(self.query_fields, query, 100), keywords
|
||
|
||
def need_fine_grained_tokenize(tk):
|
||
"""
|
||
判断是否需要对词进行细粒度分词。
|
||
|
||
参数:
|
||
- tk (str): 待判断的词。
|
||
|
||
返回:
|
||
- bool: 是否需要进行细粒度分词。
|
||
"""
|
||
# 长度小于3的词不处理
|
||
if len(tk) < 3:
|
||
return False
|
||
# 匹配特定模式的词不处理(如数字、字母、符号组合)
|
||
if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
|
||
return False
|
||
return True
|
||
|
||
txt = FulltextQueryer.rmWWW(txt)
|
||
qs, keywords = [], []
|
||
# 遍历文本分割后的前256个片段(防止处理过长文本)
|
||
for tt in self.tw.split(txt)[:256]: # 注:这个split似乎是对英文设计,中文不起作用
|
||
if not tt:
|
||
continue
|
||
# 将当前片段加入关键词列表
|
||
keywords.append(tt)
|
||
# 获取当前片段的权重
|
||
twts = self.tw.weights([tt])
|
||
# 查找同义词
|
||
syns = self.syn.lookup(tt)
|
||
# 如果有同义词且关键词数量未超过32,将同义词加入关键词列表
|
||
if syns and len(keywords) < 32:
|
||
keywords.extend(syns)
|
||
# 调试日志:输出权重信息
|
||
logging.debug(json.dumps(twts, ensure_ascii=False))
|
||
# 初始化查询条件列表
|
||
tms = []
|
||
# 按权重降序排序处理每个token
|
||
for tk, w in sorted(twts, key=lambda x: x[1] * -1):
|
||
# 如果需要细粒度分词,则进行分词处理
|
||
sm = rag_tokenizer.fine_grained_tokenize(tk).split() if need_fine_grained_tokenize(tk) else []
|
||
# 对每个分词结果进行清洗:
|
||
# 1. 去除标点符号和特殊字符
|
||
# 2. 使用subSpecialChar进一步处理
|
||
# 3. 过滤掉长度<=1的词
|
||
sm = [
|
||
re.sub(
|
||
r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
|
||
"",
|
||
m,
|
||
)
|
||
for m in sm
|
||
]
|
||
sm = [FulltextQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
|
||
sm = [m for m in sm if len(m) > 1]
|
||
|
||
# 如果关键词数量未达上限,添加处理后的token和分词结果
|
||
if len(keywords) < 32:
|
||
keywords.append(re.sub(r"[ \\\"']+", "", tk)) # 去除转义字符
|
||
keywords.extend(sm) # 添加分词结果
|
||
# 获取当前token的同义词并进行处理
|
||
tk_syns = self.syn.lookup(tk)
|
||
tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns]
|
||
# 添加有效同义词到关键词列表
|
||
if len(keywords) < 32:
|
||
keywords.extend([s for s in tk_syns if s])
|
||
# 对同义词进行分词处理,并为包含空格的同义词添加引号
|
||
tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s]
|
||
tk_syns = [f'"{s}"' if s.find(" ") > 0 else s for s in tk_syns]
|
||
|
||
# 关键词数量达到上限则停止处理
|
||
if len(keywords) >= 32:
|
||
break
|
||
|
||
# 处理当前token用于构建查询条件:
|
||
# 1. 特殊字符处理
|
||
# 2. 为包含空格的token添加引号
|
||
# 3. 如果有同义词,构建OR条件并降低权重
|
||
# 4. 如果有分词结果,添加OR条件
|
||
tk = FulltextQueryer.subSpecialChar(tk)
|
||
if tk.find(" ") > 0:
|
||
tk = '"%s"' % tk
|
||
if tk_syns:
|
||
tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns)
|
||
if sm:
|
||
tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm))
|
||
if tk.strip():
|
||
tms.append((tk, w))
|
||
|
||
# 将处理后的查询条件按权重组合成字符串
|
||
tms = " ".join([f"({t})^{w}" for t, w in tms])
|
||
|
||
# 如果有多个权重项,添加短语搜索条件(提高相邻词匹配的权重)
|
||
if len(twts) > 1:
|
||
tms += ' ("%s"~2)^1.5' % rag_tokenizer.tokenize(tt)
|
||
|
||
# 处理同义词的查询条件
|
||
syns = " OR ".join(['"%s"' % rag_tokenizer.tokenize(FulltextQueryer.subSpecialChar(s)) for s in syns])
|
||
# 组合主查询条件和同义词条件
|
||
if syns and tms:
|
||
tms = f"({tms})^5 OR ({syns})^0.7"
|
||
# 将最终查询条件加入列表
|
||
qs.append(tms)
|
||
|
||
# 处理所有查询条件
|
||
if qs:
|
||
# 组合所有查询条件为OR关系
|
||
query = " OR ".join([f"({t})" for t in qs if t])
|
||
# 如果查询条件为空,使用原始文本
|
||
if not query:
|
||
query = otxt
|
||
# 返回匹配文本表达式和关键词
|
||
return MatchTextExpr(self.query_fields, query, 100, {"minimum_should_match": min_match}), keywords
|
||
# 如果没有生成查询条件,只返回关键词
|
||
return None, keywords
|
||
|
||
def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, vtweight=0.7):
|
||
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
|
||
import numpy as np
|
||
|
||
sims = CosineSimilarity([avec], bvecs)
|
||
tksim = self.token_similarity(atks, btkss)
|
||
if np.sum(sims[0]) == 0:
|
||
return np.array(tksim), tksim, sims[0]
|
||
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]
|
||
|
||
def token_similarity(self, atks, btkss):
|
||
def toDict(tks):
|
||
d = {}
|
||
if isinstance(tks, str):
|
||
tks = tks.split()
|
||
for t, c in self.tw.weights(tks, preprocess=False):
|
||
if t not in d:
|
||
d[t] = 0
|
||
d[t] += c
|
||
return d
|
||
|
||
atks = toDict(atks)
|
||
btkss = [toDict(tks) for tks in btkss]
|
||
return [self.similarity(atks, btks) for btks in btkss]
|
||
|
||
def similarity(self, qtwt, dtwt):
|
||
if isinstance(dtwt, type("")):
|
||
dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt), preprocess=False)}
|
||
if isinstance(qtwt, type("")):
|
||
qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt), preprocess=False)}
|
||
s = 1e-9
|
||
for k, v in qtwt.items():
|
||
if k in dtwt:
|
||
s += v # * dtwt[k]
|
||
q = 1e-9
|
||
for k, v in qtwt.items():
|
||
q += v
|
||
return s / q
|
||
|
||
def paragraph(self, content_tks: str, keywords: list = [], keywords_topn=30):
|
||
if isinstance(content_tks, str):
|
||
content_tks = [c.strip() for c in content_tks.strip() if c.strip()]
|
||
tks_w = self.tw.weights(content_tks, preprocess=False)
|
||
|
||
keywords = [f'"{k.strip()}"' for k in keywords]
|
||
for tk, w in sorted(tks_w, key=lambda x: x[1] * -1)[:keywords_topn]:
|
||
tk_syns = self.syn.lookup(tk)
|
||
tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns]
|
||
tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s]
|
||
tk_syns = [f'"{s}"' if s.find(" ") > 0 else s for s in tk_syns]
|
||
tk = FulltextQueryer.subSpecialChar(tk)
|
||
if tk.find(" ") > 0:
|
||
tk = '"%s"' % tk
|
||
if tk_syns:
|
||
tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns)
|
||
if tk:
|
||
keywords.append(f"{tk}^{w}")
|
||
|
||
return MatchTextExpr(self.query_fields, " ".join(keywords), 100, {"minimum_should_match": min(3, len(keywords) / 10)})
|