368 lines
14 KiB
Python
368 lines
14 KiB
Python
#
|
||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
import os
|
||
import random
|
||
import xxhash
|
||
from datetime import datetime
|
||
|
||
from api.db.db_utils import bulk_insert_into_db
|
||
from deepdoc.parser import PdfParser
|
||
from peewee import JOIN
|
||
from api.db.db_models import DB, File2Document, File
|
||
from api.db import StatusEnum, FileType, TaskStatus
|
||
from api.db.db_models import Task, Document, Knowledgebase, Tenant
|
||
from api.db.services.common_service import CommonService
|
||
from api.db.services.document_service import DocumentService
|
||
from api.utils import current_timestamp, get_uuid
|
||
from deepdoc.parser.excel_parser import RAGFlowExcelParser
|
||
from rag.settings import SVR_QUEUE_NAME
|
||
from rag.utils.storage_factory import STORAGE_IMPL
|
||
from rag.utils.redis_conn import REDIS_CONN
|
||
from api import settings
|
||
from rag.nlp import search
|
||
|
||
|
||
def trim_header_by_lines(text: str, max_length) -> str:
|
||
len_text = len(text)
|
||
if len_text <= max_length:
|
||
return text
|
||
for i in range(len_text):
|
||
if text[i] == '\n' and len_text - i <= max_length:
|
||
return text[i + 1:]
|
||
return text
|
||
|
||
|
||
class TaskService(CommonService):
|
||
model = Task
|
||
|
||
@classmethod
|
||
@DB.connection_context()
|
||
def get_task(cls, task_id):
|
||
fields = [
|
||
cls.model.id,
|
||
cls.model.doc_id,
|
||
cls.model.from_page,
|
||
cls.model.to_page,
|
||
cls.model.retry_count,
|
||
Document.kb_id,
|
||
Document.parser_id,
|
||
Document.parser_config,
|
||
Document.name,
|
||
Document.type,
|
||
Document.location,
|
||
Document.size,
|
||
Knowledgebase.tenant_id,
|
||
Knowledgebase.language,
|
||
Knowledgebase.embd_id,
|
||
Knowledgebase.pagerank,
|
||
Knowledgebase.parser_config.alias("kb_parser_config"),
|
||
Tenant.img2txt_id,
|
||
Tenant.asr_id,
|
||
Tenant.llm_id,
|
||
cls.model.update_time,
|
||
]
|
||
docs = (
|
||
cls.model.select(*fields)
|
||
.join(Document, on=(cls.model.doc_id == Document.id))
|
||
.join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id))
|
||
.join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
|
||
.where(cls.model.id == task_id)
|
||
)
|
||
docs = list(docs.dicts())
|
||
if not docs:
|
||
return None
|
||
|
||
msg = f"\n{datetime.now().strftime('%H:%M:%S')} Task has been received."
|
||
prog = random.random() / 10.0
|
||
if docs[0]["retry_count"] >= 3:
|
||
msg = "\nERROR: Task is abandoned after 3 times attempts."
|
||
prog = -1
|
||
|
||
cls.model.update(
|
||
progress_msg=cls.model.progress_msg + msg,
|
||
progress=prog,
|
||
retry_count=docs[0]["retry_count"] + 1,
|
||
).where(cls.model.id == docs[0]["id"]).execute()
|
||
|
||
if docs[0]["retry_count"] >= 3:
|
||
return None
|
||
|
||
return docs[0]
|
||
|
||
@classmethod
|
||
@DB.connection_context()
|
||
def get_tasks(cls, doc_id: str):
|
||
fields = [
|
||
cls.model.id,
|
||
cls.model.from_page,
|
||
cls.model.progress,
|
||
cls.model.digest,
|
||
cls.model.chunk_ids,
|
||
]
|
||
tasks = (
|
||
cls.model.select(*fields).order_by(cls.model.from_page.asc(), cls.model.create_time.desc())
|
||
.where(cls.model.doc_id == doc_id)
|
||
)
|
||
tasks = list(tasks.dicts())
|
||
if not tasks:
|
||
return None
|
||
return tasks
|
||
|
||
@classmethod
|
||
@DB.connection_context()
|
||
def update_chunk_ids(cls, id: str, chunk_ids: str):
|
||
cls.model.update(chunk_ids=chunk_ids).where(cls.model.id == id).execute()
|
||
|
||
@classmethod
|
||
@DB.connection_context()
|
||
def get_ongoing_doc_name(cls):
|
||
with DB.lock("get_task", -1):
|
||
docs = (
|
||
cls.model.select(
|
||
*[Document.id, Document.kb_id, Document.location, File.parent_id]
|
||
)
|
||
.join(Document, on=(cls.model.doc_id == Document.id))
|
||
.join(
|
||
File2Document,
|
||
on=(File2Document.document_id == Document.id),
|
||
join_type=JOIN.LEFT_OUTER,
|
||
)
|
||
.join(
|
||
File,
|
||
on=(File2Document.file_id == File.id),
|
||
join_type=JOIN.LEFT_OUTER,
|
||
)
|
||
.where(
|
||
Document.status == StatusEnum.VALID.value,
|
||
Document.run == TaskStatus.RUNNING.value,
|
||
~(Document.type == FileType.VIRTUAL.value),
|
||
cls.model.progress < 1,
|
||
cls.model.create_time >= current_timestamp() - 1000 * 600,
|
||
)
|
||
)
|
||
docs = list(docs.dicts())
|
||
if not docs:
|
||
return []
|
||
|
||
return list(
|
||
set(
|
||
[
|
||
(
|
||
d["parent_id"] if d["parent_id"] else d["kb_id"],
|
||
d["location"],
|
||
)
|
||
for d in docs
|
||
]
|
||
)
|
||
)
|
||
|
||
@classmethod
|
||
@DB.connection_context()
|
||
def do_cancel(cls, id):
|
||
task = cls.model.get_by_id(id)
|
||
_, doc = DocumentService.get_by_id(task.doc_id)
|
||
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
|
||
|
||
@classmethod
|
||
@DB.connection_context()
|
||
def update_progress(cls, id, info):
|
||
if os.environ.get("MACOS"):
|
||
if info["progress_msg"]:
|
||
task = cls.model.get_by_id(id)
|
||
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
|
||
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
|
||
if "progress" in info:
|
||
cls.model.update(progress=info["progress"]).where(
|
||
cls.model.id == id
|
||
).execute()
|
||
return
|
||
|
||
with DB.lock("update_progress", -1):
|
||
if info["progress_msg"]:
|
||
task = cls.model.get_by_id(id)
|
||
progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
|
||
cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
|
||
if "progress" in info:
|
||
cls.model.update(progress=info["progress"]).where(
|
||
cls.model.id == id
|
||
).execute()
|
||
|
||
|
||
def queue_tasks(doc: dict, bucket: str, name: str):
|
||
"""
|
||
将文档解析任务分割并加入队列处理。
|
||
|
||
该函数根据文档类型(PDF、表格等)将文档分割成多个子任务,计算任务摘要,
|
||
检查是否可以重用之前的任务结果,并将未完成的任务加入Redis队列进行处理。
|
||
|
||
参数:
|
||
doc (dict): 文档信息字典,包含id、type、parser_id、parser_config等信息
|
||
bucket (str): 存储桶名称
|
||
name (str): 文件名称
|
||
|
||
流程:
|
||
1. 根据文档类型(PDF/表格)将文档分割成多个子任务
|
||
2. 为每个任务生成唯一摘要(digest)
|
||
3. 尝试重用之前任务的处理结果
|
||
4. 清理旧任务并更新文档状态
|
||
5. 将新任务批量插入数据库
|
||
6. 将未完成的任务加入Redis队列
|
||
"""
|
||
def new_task():
|
||
"""
|
||
创建一个新的任务字典,包含基本任务信息。
|
||
|
||
返回:
|
||
dict: 包含任务ID、文档ID、进度和页面范围的任务字典
|
||
"""
|
||
return {"id": get_uuid(), "doc_id": doc["id"], "progress": 0.0, "from_page": 0, "to_page": 100000000}
|
||
|
||
# 存储所有解析任务的数组
|
||
parse_task_array = []
|
||
|
||
# PDF文档处理逻辑
|
||
if doc["type"] == FileType.PDF.value:
|
||
# 从存储中获取文件内容
|
||
file_bin = STORAGE_IMPL.get(bucket, name)
|
||
# 获取布局识别方式,默认为"DeepDOC"
|
||
do_layout = doc["parser_config"].get("layout_recognize", "DeepDOC")
|
||
# 获取PDF总页数
|
||
pages = PdfParser.total_page_number(doc["name"], file_bin)
|
||
# 获取每个任务处理的页数,默认为12页
|
||
page_size = doc["parser_config"].get("task_page_size", 12)
|
||
# 对于学术论文类型,默认任务页数为22
|
||
if doc["parser_id"] == "paper":
|
||
page_size = doc["parser_config"].get("task_page_size", 22)
|
||
# 对于特定解析器或非DeepDOC布局识别,将整个文档作为一个任务处理
|
||
if doc["parser_id"] in ["one", "knowledge_graph"] or do_layout != "DeepDOC":
|
||
page_size = 10 ** 9
|
||
# 获取需要处理的页面范围,默认为全部页面
|
||
page_ranges = doc["parser_config"].get("pages") or [(1, 10 ** 5)]
|
||
# 根据页面范围和任务页数分割任务
|
||
for s, e in page_ranges:
|
||
# 调整页码(从0开始)
|
||
s -= 1
|
||
s = max(0, s)
|
||
# 确保结束页不超过文档总页数
|
||
e = min(e - 1, pages)
|
||
# 按照任务页数分割任务
|
||
for p in range(s, e, page_size):
|
||
task = new_task()
|
||
task["from_page"] = p
|
||
task["to_page"] = min(p + page_size, e)
|
||
parse_task_array.append(task)
|
||
|
||
# 表格文档处理逻辑
|
||
elif doc["parser_id"] == "table":
|
||
# 从存储中获取文件内容
|
||
file_bin = STORAGE_IMPL.get(bucket, name)
|
||
# 获取表格总行数
|
||
rn = RAGFlowExcelParser.row_number(doc["name"], file_bin)
|
||
# 每3000行作为一个任务
|
||
for i in range(0, rn, 3000):
|
||
task = new_task()
|
||
task["from_page"] = i
|
||
task["to_page"] = min(i + 3000, rn)
|
||
parse_task_array.append(task)
|
||
# 其他类型文档,整个文档作为一个任务处理
|
||
else:
|
||
parse_task_array.append(new_task())
|
||
|
||
# 获取文档的分块配置
|
||
chunking_config = DocumentService.get_chunking_config(doc["id"])
|
||
# 为每个任务生成唯一摘要(digest)
|
||
for task in parse_task_array:
|
||
# 创建哈希对象
|
||
hasher = xxhash.xxh64()
|
||
# 对分块配置中的每个字段进行哈希
|
||
for field in sorted(chunking_config.keys()):
|
||
if field == "parser_config":
|
||
# 移除不需要参与哈希计算的特定配置项
|
||
for k in ["raptor", "graphrag"]:
|
||
if k in chunking_config[field]:
|
||
del chunking_config[field][k]
|
||
# 将配置字段添加到哈希计算中
|
||
hasher.update(str(chunking_config[field]).encode("utf-8"))
|
||
# 将任务特定字段添加到哈希计算中
|
||
for field in ["doc_id", "from_page", "to_page"]:
|
||
hasher.update(str(task.get(field, "")).encode("utf-8"))
|
||
# 生成任务摘要并设置初始进度
|
||
task_digest = hasher.hexdigest()
|
||
task["digest"] = task_digest
|
||
task["progress"] = 0.0
|
||
|
||
# 获取文档之前的任务记录
|
||
prev_tasks = TaskService.get_tasks(doc["id"])
|
||
# 记录重用的块数量
|
||
ck_num = 0
|
||
if prev_tasks:
|
||
# 尝试重用之前任务的处理结果
|
||
for task in parse_task_array:
|
||
ck_num += reuse_prev_task_chunks(task, prev_tasks, chunking_config)
|
||
# 删除文档之前的任务记录
|
||
TaskService.filter_delete([Task.doc_id == doc["id"]])
|
||
# 收集需要删除的块ID
|
||
chunk_ids = []
|
||
for task in prev_tasks:
|
||
if task["chunk_ids"]:
|
||
chunk_ids.extend(task["chunk_ids"].split())
|
||
# 从文档存储中删除这些块
|
||
if chunk_ids:
|
||
settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(chunking_config["tenant_id"]),
|
||
chunking_config["kb_id"])
|
||
# 更新文档的块数量
|
||
DocumentService.update_by_id(doc["id"], {"chunk_num": ck_num})
|
||
|
||
# 将新任务批量插入数据库
|
||
bulk_insert_into_db(Task, parse_task_array, True)
|
||
# 开始解析文档
|
||
DocumentService.begin2parse(doc["id"])
|
||
|
||
# 筛选出未完成的任务
|
||
unfinished_task_array = [task for task in parse_task_array if task["progress"] < 1.0]
|
||
# 将未完成的任务加入Redis队列
|
||
for unfinished_task in unfinished_task_array:
|
||
assert REDIS_CONN.queue_product(
|
||
SVR_QUEUE_NAME, message=unfinished_task
|
||
), "Can't access Redis. Please check the Redis' status."
|
||
|
||
|
||
def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
|
||
idx = 0
|
||
while idx < len(prev_tasks):
|
||
prev_task = prev_tasks[idx]
|
||
if prev_task.get("from_page", 0) == task.get("from_page", 0) \
|
||
and prev_task.get("digest", 0) == task.get("digest", ""):
|
||
break
|
||
idx += 1
|
||
|
||
if idx >= len(prev_tasks):
|
||
return 0
|
||
prev_task = prev_tasks[idx]
|
||
if prev_task["progress"] < 1.0 or not prev_task["chunk_ids"]:
|
||
return 0
|
||
task["chunk_ids"] = prev_task["chunk_ids"]
|
||
task["progress"] = 1.0
|
||
if "from_page" in task and "to_page" in task and int(task['to_page']) - int(task['from_page']) >= 10 ** 6:
|
||
task["progress_msg"] = f"Page({task['from_page']}~{task['to_page']}): "
|
||
else:
|
||
task["progress_msg"] = ""
|
||
task["progress_msg"] = " ".join(
|
||
[datetime.now().strftime("%H:%M:%S"), task["progress_msg"], "Reused previous task's chunks."])
|
||
prev_task["chunk_ids"] = ""
|
||
|
||
return len(task["chunk_ids"].split())
|