RAGflow/rag/nlp/query.py

248 lines
9.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import logging
import json
import re
from rag.utils.doc_store_conn import MatchTextExpr
from rag.nlp import rag_tokenizer, term_weight, synonym
class FulltextQueryer:
def __init__(self):
self.tw = term_weight.Dealer()
self.syn = synonym.Dealer()
self.query_fields = [
"title_tks^10",
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"question_tks^20",
"content_ltks^2",
"content_sm_ltks",
]
@staticmethod
def subSpecialChar(line):
return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|\+~\^])", r"\\\1", line).strip()
@staticmethod
def isChinese(line):
arr = re.split(r"[ \t]+", line)
if len(arr) <= 3:
return True
e = 0
for t in arr:
if not re.match(r"[a-zA-Z]+$", t):
e += 1
return e * 1.0 / len(arr) >= 0.7
@staticmethod
def rmWWW(txt):
patts = [
(
r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀|谁|哪位|哪个)是*",
"",
),
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
(
r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down|of|to|or|and|if) ",
" ")
]
otxt = txt
for r, p in patts:
txt = re.sub(r, p, txt, flags=re.IGNORECASE)
if not otxt:
txt = otxt
return txt
def question(self, txt, tbl="qa", min_match: float = 0.6):
txt = re.sub(
r"[ :|\r\n\t,,。??/`!&^%%()\[\]{}<>]+",
" ",
rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())),
).strip()
txt = FulltextQueryer.rmWWW(txt)
if not self.isChinese(txt):
txt = FulltextQueryer.rmWWW(txt)
tks = rag_tokenizer.tokenize(txt).split()
keywords = [t for t in tks if t]
tks_w = self.tw.weights(tks, preprocess=False)
tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk]
tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
tks_w = [(tk.strip(), w) for tk, w in tks_w if tk.strip()]
syns = []
for tk, w in tks_w[:256]:
syn = self.syn.lookup(tk)
syn = rag_tokenizer.tokenize(" ".join(syn)).split()
keywords.extend(syn)
syn = ["\"{}\"^{:.4f}".format(s, w / 4.) for s in syn if s.strip()]
syns.append(" ".join(syn))
q = ["({}^{:.4f}".format(tk, w) + " {})".format(syn) for (tk, w), syn in zip(tks_w, syns) if
tk and not re.match(r"[.^+\(\)-]", tk)]
for i in range(1, len(tks_w)):
left, right = tks_w[i - 1][0].strip(), tks_w[i][0].strip()
if not left or not right:
continue
q.append(
'"%s %s"^%.4f'
% (
tks_w[i - 1][0],
tks_w[i][0],
max(tks_w[i - 1][1], tks_w[i][1]) * 2,
)
)
if not q:
q.append(txt)
query = " ".join(q)
return MatchTextExpr(
self.query_fields, query, 100
), keywords
def need_fine_grained_tokenize(tk):
if len(tk) < 3:
return False
if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
return False
return True
txt = FulltextQueryer.rmWWW(txt)
qs, keywords = [], []
for tt in self.tw.split(txt)[:256]: # .split():
if not tt:
continue
keywords.append(tt)
twts = self.tw.weights([tt])
syns = self.syn.lookup(tt)
if syns and len(keywords) < 32:
keywords.extend(syns)
logging.debug(json.dumps(twts, ensure_ascii=False))
tms = []
for tk, w in sorted(twts, key=lambda x: x[1] * -1):
sm = (
rag_tokenizer.fine_grained_tokenize(tk).split()
if need_fine_grained_tokenize(tk)
else []
)
sm = [
re.sub(
r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
"",
m,
)
for m in sm
]
sm = [FulltextQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
sm = [m for m in sm if len(m) > 1]
if len(keywords) < 32:
keywords.append(re.sub(r"[ \\\"']+", "", tk))
keywords.extend(sm)
tk_syns = self.syn.lookup(tk)
tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns]
if len(keywords) < 32:
keywords.extend([s for s in tk_syns if s])
tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s]
tk_syns = [f"\"{s}\"" if s.find(" ") > 0 else s for s in tk_syns]
if len(keywords) >= 32:
break
tk = FulltextQueryer.subSpecialChar(tk)
if tk.find(" ") > 0:
tk = '"%s"' % tk
if tk_syns:
tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns)
if sm:
tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm))
if tk.strip():
tms.append((tk, w))
tms = " ".join([f"({t})^{w}" for t, w in tms])
if len(twts) > 1:
tms += ' ("%s"~2)^1.5' % rag_tokenizer.tokenize(tt)
syns = " OR ".join(
[
'"%s"'
% rag_tokenizer.tokenize(FulltextQueryer.subSpecialChar(s))
for s in syns
]
)
if syns and tms:
tms = f"({tms})^5 OR ({syns})^0.7"
qs.append(tms)
if qs:
query = " OR ".join([f"({t})" for t in qs if t])
return MatchTextExpr(
self.query_fields, query, 100, {"minimum_should_match": min_match}
), keywords
return None, keywords
# 在此计算相似度
def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, vtweight=0.7):
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
import numpy as np
sims = CosineSimilarity([avec], bvecs)
tksim = self.token_similarity(atks, btkss)
if np.sum(sims[0]) == 0:
return np.array(tksim), tksim, sims[0]
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]
def token_similarity(self, atks, btkss):
def toDict(tks):
d = {}
if isinstance(tks, str):
tks = tks.split()
for t, c in self.tw.weights(tks, preprocess=False):
if t not in d:
d[t] = 0
d[t] += c
return d
atks = toDict(atks)
btkss = [toDict(tks) for tks in btkss]
return [self.similarity(atks, btks) for btks in btkss]
def similarity(self, qtwt, dtwt):
if isinstance(dtwt, type("")):
dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt), preprocess=False)}
if isinstance(qtwt, type("")):
qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt), preprocess=False)}
s = 1e-9
for k, v in qtwt.items():
if k in dtwt:
s += v # * dtwt[k]
q = 1e-9
for k, v in qtwt.items():
q += v
return s / q
def paragraph(self, content_tks: str, keywords: list = [], keywords_topn=30):
if isinstance(content_tks, str):
content_tks = [c.strip() for c in content_tks.strip() if c.strip()]
tks_w = self.tw.weights(content_tks, preprocess=False)
keywords = [f'"{k.strip()}"' for k in keywords]
for tk, w in sorted(tks_w, key=lambda x: x[1] * -1)[:keywords_topn]:
tk_syns = self.syn.lookup(tk)
tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns]
tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s]
tk_syns = [f"\"{s}\"" if s.find(" ") > 0 else s for s in tk_syns]
tk = FulltextQueryer.subSpecialChar(tk)
if tk.find(" ") > 0:
tk = '"%s"' % tk
if tk_syns:
tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns)
if tk:
keywords.append(f"{tk}^{w}")
return MatchTextExpr(self.query_fields, " ".join(keywords), 100,
{"minimum_should_match": min(3, len(keywords) / 10)})