接入图像预处理,画出预处理流程图,完善处理前程序用户交互逻辑。

This commit is contained in:
Voge1imkafig 2025-08-06 17:56:29 +08:00
parent 17f82c78ee
commit 832c91454e
23 changed files with 2061 additions and 135 deletions

3
.gitignore vendored
View File

@ -201,3 +201,6 @@ __marimo__/
# Streamlit
.streamlit/secrets.toml
测试数据/
model/

12
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,12 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Run Main",
"type": "debugpy",
"request": "launch",
"program": "${workspaceFolder}/main.py", //
"console": "integratedTerminal"
}
]
}

127
MainWindow/mainwindow.py Normal file
View File

@ -0,0 +1,127 @@
from PySide6.QtWidgets import (QMainWindow, QWidget, QGridLayout,
QPushButton, QSizePolicy, QSplitter, QToolBar)
from PySide6.QtGui import QFontDatabase
from PySide6.QtCore import Signal, Qt
import os
from info_core.defines import *
from info_core.MyQtClass import ConfigComboBoxGroup, FolderDropWidget
class ReportGeneratorUI(QMainWindow):
send_baogao_choose_info = Signal(list[str])
def __init__(self):
super().__init__()
# 加载字体
self.load_font()
# 设置窗口属性
self.setWindowTitle("报告生成器")
self.setMinimumSize(WINDOW_MIN_WIDTH, WINDOW_MIN_HEIGHT)
# 主窗口部件
self.central_widget = QWidget()
self.setCentralWidget(self.central_widget)
# 主布局
self.main_layout = QGridLayout(self.central_widget)
self.main_layout.setSpacing(MAIN_LAYOUT_SPACING)
self.main_layout.setContentsMargins(*MAIN_LAYOUT_MARGINS)
# 初始化UI
self.init_ui()
def load_font(self):
"""加载自定义字体"""
if os.path.exists(FONT_PATH):
font_id = QFontDatabase.addApplicationFont(FONT_PATH)
if font_id == -1:
print("字体加载失败,将使用系统默认字体")
else:
print(f"字体文件未找到: {FONT_PATH},将使用系统默认字体")
def init_ui(self):
"""初始化所有UI组件"""
# 第一行:项目信息和人员配置
self.project_group = ConfigComboBoxGroup("项目基本信息")
self.staff_group = ConfigComboBoxGroup("单次检查配置信息", is_project=False)
# 第二行:导入图片路径、填写机组信息
self.picture_group = FolderDropWidget()
# self.image_analysis =
# self.main_layout.addWidget(self.image_analysis, 1, 1)
# 第三行:生成报告按钮(跨两列)
self.fill_turbine_info_button()
self.fill_btn.clicked.connect(self.on_fill_clicked)
# 创建一个垂直分割器
self.splitter = QSplitter(Qt.Vertical)
self.splitter.setStyleSheet(SPLITTER_STYLE)
# 创建顶部和底部容器
top_container = QWidget()
top_container.setLayout(QGridLayout())
top_container.layout().addWidget(self.project_group, 0, 0)
top_container.layout().addWidget(self.staff_group, 0, 1)
middle_container = QWidget()
middle_container.setLayout(QGridLayout())
middle_container.layout().addWidget(self.picture_group, 0, 0)
# 添加部件到分割器
self.splitter.addWidget(top_container)
self.splitter.addWidget(middle_container)
# 设置主布局
self.main_layout.addWidget(self.splitter, 0, 0, 2, 2) # 占据前两行两列
self.main_layout.addWidget(self.fill_btn, 2, 0, 1, 2)
# 设置分割器初始比例
self.splitter.setStretchFactor(0, 1)
self.splitter.setStretchFactor(1, 4)
self.toolbar = QToolBar()
self.addToolBar(self.toolbar)
self.toolbar.setMovable(False)
self.toolbar.setFloatable(False)
new_action = self.toolbar.addAction("重置布局比例")
self.toolbar.addSeparator()
new_action.triggered.connect(self.reset_splitter)
def reset_splitter(self):
"""重置分割器的比例"""
total_size = sum(self.splitter.sizes()) # 获取当前总大小
self.splitter.setSizes([
int(total_size * 0.2), # 第一部分占 20%(比例 1:4
int(total_size * 0.8) # 第二部分占 80%
])
def on_fill_clicked(self):
"""填写信息"""
# 读取各个配置信息
turbine_file_list = self.picture_group.get_selected_folders()
print(turbine_file_list)
# search_file_list = []
# if self.image_analysis.check_is_waibu:
# search_file_list.append("外汇总")
# if self.image_analysis.check_is_neibu:
# search_file_list.append("内汇总")
# if self.image_analysis.check_is_fanglei:
# search_file_list.append("防汇总")
# self.send_baogao_choose_info.emit(search_file_list)
def create_button(self, text):
"""创建统一风格的按钮"""
btn = QPushButton(text)
btn.setStyleSheet(BUTTON_STYLE)
btn.setFixedSize(BUTTON_WIDTH, BUTTON_HEIGHT)
return btn
def fill_turbine_info_button(self):
"""创建生成报告按钮"""
self.fill_btn = QPushButton("开始填写各个机组信息")
self.fill_btn.setStyleSheet(PRIMARY_BUTTON_STYLE)
self.fill_btn.setFixedHeight(50)
self.fill_btn.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed)

View File

@ -3,5 +3,7 @@
- 数据预处理:阴暗处亮度增加,细节增强。
- 数据报告生成:基于模板批量生成报告。
![项目架构](工具流程.png)
# 项目架构图
![项目架构](工具流程.png)
# 预处理流程图
![预处理流程](原始数据预处理流程图.png)

416
depth_anything_v2/dinov2.py Normal file
View File

@ -0,0 +1,416 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
from functools import partial
import math
import logging
from typing import Sequence, Tuple, Union, Callable
import torch
import torch.nn as nn
import torch.utils.checkpoint
from torch.nn.init import trunc_normal_
from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
logger = logging.getLogger("dinov2")
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
if not depth_first and include_root:
fn(module=module, name=name)
for child_name, child_module in module.named_children():
child_name = ".".join((name, child_name)) if name else child_name
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
if depth_first and include_root:
fn(module=module, name=name)
return module
class BlockChunk(nn.ModuleList):
def forward(self, x):
for b in self:
x = b(x)
return x
class DinoVisionTransformer(nn.Module):
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
ffn_bias=True,
proj_bias=True,
drop_path_rate=0.0,
drop_path_uniform=False,
init_values=None, # for layerscale: None or 0 => no layerscale
embed_layer=PatchEmbed,
act_layer=nn.GELU,
block_fn=Block,
ffn_layer="mlp",
block_chunks=1,
num_register_tokens=0,
interpolate_antialias=False,
interpolate_offset=0.1,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
proj_bias (bool): enable bias for proj in attn if True
ffn_bias (bool): enable bias for ffn if True
drop_path_rate (float): stochastic depth rate
drop_path_uniform (bool): apply uniform drop rate across blocks
weight_init (str): weight init scheme
init_values (float): layer-scale init values
embed_layer (nn.Module): patch embedding layer
act_layer (nn.Module): MLP activation layer
block_fn (nn.Module): transformer block class
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
"""
super().__init__()
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_tokens = 1
self.n_blocks = depth
self.num_heads = num_heads
self.patch_size = patch_size
self.num_register_tokens = num_register_tokens
self.interpolate_antialias = interpolate_antialias
self.interpolate_offset = interpolate_offset
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
assert num_register_tokens >= 0
self.register_tokens = (
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
)
if drop_path_uniform is True:
dpr = [drop_path_rate] * depth
else:
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
if ffn_layer == "mlp":
logger.info("using MLP layer as FFN")
ffn_layer = Mlp
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
logger.info("using SwiGLU layer as FFN")
ffn_layer = SwiGLUFFNFused
elif ffn_layer == "identity":
logger.info("using Identity layer as FFN")
def f(*args, **kwargs):
return nn.Identity()
ffn_layer = f
else:
raise NotImplementedError
blocks_list = [
block_fn(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_bias=proj_bias,
ffn_bias=ffn_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
ffn_layer=ffn_layer,
init_values=init_values,
)
for i in range(depth)
]
if block_chunks > 0:
self.chunked_blocks = True
chunked_blocks = []
chunksize = depth // block_chunks
for i in range(0, depth, chunksize):
# this is to keep the block index consistent if we chunk the block list
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
else:
self.chunked_blocks = False
self.blocks = nn.ModuleList(blocks_list)
self.norm = norm_layer(embed_dim)
self.head = nn.Identity()
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
self.init_weights()
def init_weights(self):
trunc_normal_(self.pos_embed, std=0.02)
nn.init.normal_(self.cls_token, std=1e-6)
if self.register_tokens is not None:
nn.init.normal_(self.register_tokens, std=1e-6)
named_apply(init_weights_vit_timm, self)
def interpolate_pos_encoding(self, x, w, h):
previous_dtype = x.dtype
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == h:
return self.pos_embed
pos_embed = self.pos_embed.float()
class_pos_embed = pos_embed[:, 0]
patch_pos_embed = pos_embed[:, 1:]
dim = x.shape[-1]
w0 = w // self.patch_size
h0 = h // self.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
# DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
# w0, h0 = w0 + 0.1, h0 + 0.1
sqrt_N = math.sqrt(N)
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
scale_factor=(sx, sy),
# (int(w0), int(h0)), # to solve the upsampling shape issue
mode="bicubic"
)
# antialias=self.interpolate_antialias
# )
assert int(w0) == patch_pos_embed.shape[-2]
assert int(h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
def prepare_tokens_with_masks(self, x, masks=None):
B, nc, w, h = x.shape
x = self.patch_embed(x)
if masks is not None:
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.interpolate_pos_encoding(x, w, h)
if self.register_tokens is not None:
x = torch.cat(
(
x[:, :1],
self.register_tokens.expand(x.shape[0], -1, -1),
x[:, 1:],
),
dim=1,
)
return x
def forward_features_list(self, x_list, masks_list):
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
for blk in self.blocks:
x = blk(x)
all_x = x
output = []
for x, masks in zip(all_x, masks_list):
x_norm = self.norm(x)
output.append(
{
"x_norm_clstoken": x_norm[:, 0],
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
"x_prenorm": x,
"masks": masks,
}
)
return output
def forward_features(self, x, masks=None):
if isinstance(x, list):
return self.forward_features_list(x, masks)
x = self.prepare_tokens_with_masks(x, masks)
for blk in self.blocks:
x = blk(x)
x_norm = self.norm(x)
return {
"x_norm_clstoken": x_norm[:, 0],
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
"x_prenorm": x,
"masks": masks,
}
def _get_intermediate_layers_not_chunked(self, x, n=1):
x = self.prepare_tokens_with_masks(x)
# If n is an int, take the n last blocks. If it's a list, take them
output, total_block_len = [], len(self.blocks)
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in blocks_to_take:
output.append(x)
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
return output
def _get_intermediate_layers_chunked(self, x, n=1):
x = self.prepare_tokens_with_masks(x)
output, i, total_block_len = [], 0, len(self.blocks[-1])
# If n is an int, take the n last blocks. If it's a list, take them
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
for block_chunk in self.blocks:
for blk in block_chunk[i:]: # Passing the nn.Identity()
x = blk(x)
if i in blocks_to_take:
output.append(x)
i += 1
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
return output
def get_intermediate_layers(
self,
x: torch.Tensor,
n: Union[int, Sequence] = 1, # Layers or n last layers to take
reshape: bool = False,
return_class_token: bool = False,
norm=True
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
if self.chunked_blocks:
outputs = self._get_intermediate_layers_chunked(x, n)
else:
outputs = self._get_intermediate_layers_not_chunked(x, n)
if norm:
outputs = [self.norm(out) for out in outputs]
class_tokens = [out[:, 0] for out in outputs]
outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
if reshape:
B, _, w, h = x.shape
outputs = [
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
for out in outputs
]
if return_class_token:
return tuple(zip(outputs, class_tokens))
return tuple(outputs)
def forward(self, *args, is_training=False, **kwargs):
ret = self.forward_features(*args, **kwargs)
if is_training:
return ret
else:
return self.head(ret["x_norm_clstoken"])
def init_weights_vit_timm(module: nn.Module, name: str = ""):
"""ViT weight initialization, original timm impl (for reproducibility)"""
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
"""
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
"""
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=1536,
depth=40,
num_heads=24,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def DINOv2(model_name):
model_zoo = {
"vits": vit_small,
"vitb": vit_base,
"vitl": vit_large,
"vitg": vit_giant2
}
return model_zoo[model_name](
img_size=518,
patch_size=14,
init_values=1.0,
ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
block_chunks=0,
num_register_tokens=0,
interpolate_antialias=False,
interpolate_offset=0.1
)

View File

@ -0,0 +1,11 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .mlp import Mlp
from .patch_embed import PatchEmbed
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
from .block import NestedTensorBlock
from .attention import MemEffAttention

View File

@ -0,0 +1,83 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
import logging
from torch import Tensor
from torch import nn
logger = logging.getLogger("dinov2")
try:
from xformers.ops import memory_efficient_attention, unbind, fmha
XFORMERS_AVAILABLE = True
except ImportError:
logger.warning("xFormers not available")
XFORMERS_AVAILABLE = False
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
proj_bias: bool = True,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: Tensor) -> Tensor:
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MemEffAttention(Attention):
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
if not XFORMERS_AVAILABLE:
assert attn_bias is None, "xFormers is required for nested tensors usage"
return super().forward(x)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
q, k, v = unbind(qkv, 2)
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
x = x.reshape([B, N, C])
x = self.proj(x)
x = self.proj_drop(x)
return x

View File

@ -0,0 +1,252 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
import logging
from typing import Callable, List, Any, Tuple, Dict
import torch
from torch import nn, Tensor
from .attention import Attention, MemEffAttention
from .drop_path import DropPath
from .layer_scale import LayerScale
from .mlp import Mlp
logger = logging.getLogger("dinov2")
try:
from xformers.ops import fmha
from xformers.ops import scaled_index_add, index_select_cat
XFORMERS_AVAILABLE = True
except ImportError:
logger.warning("xFormers not available")
XFORMERS_AVAILABLE = False
class Block(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = False,
proj_bias: bool = True,
ffn_bias: bool = True,
drop: float = 0.0,
attn_drop: float = 0.0,
init_values=None,
drop_path: float = 0.0,
act_layer: Callable[..., nn.Module] = nn.GELU,
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
attn_class: Callable[..., nn.Module] = Attention,
ffn_layer: Callable[..., nn.Module] = Mlp,
) -> None:
super().__init__()
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
self.norm1 = norm_layer(dim)
self.attn = attn_class(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
proj_bias=proj_bias,
attn_drop=attn_drop,
proj_drop=drop,
)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = ffn_layer(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
bias=ffn_bias,
)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.sample_drop_ratio = drop_path
def forward(self, x: Tensor) -> Tensor:
def attn_residual_func(x: Tensor) -> Tensor:
return self.ls1(self.attn(self.norm1(x)))
def ffn_residual_func(x: Tensor) -> Tensor:
return self.ls2(self.mlp(self.norm2(x)))
if self.training and self.sample_drop_ratio > 0.1:
# the overhead is compensated only for a drop path rate larger than 0.1
x = drop_add_residual_stochastic_depth(
x,
residual_func=attn_residual_func,
sample_drop_ratio=self.sample_drop_ratio,
)
x = drop_add_residual_stochastic_depth(
x,
residual_func=ffn_residual_func,
sample_drop_ratio=self.sample_drop_ratio,
)
elif self.training and self.sample_drop_ratio > 0.0:
x = x + self.drop_path1(attn_residual_func(x))
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
else:
x = x + attn_residual_func(x)
x = x + ffn_residual_func(x)
return x
def drop_add_residual_stochastic_depth(
x: Tensor,
residual_func: Callable[[Tensor], Tensor],
sample_drop_ratio: float = 0.0,
) -> Tensor:
# 1) extract subset using permutation
b, n, d = x.shape
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
x_subset = x[brange]
# 2) apply residual_func to get residual
residual = residual_func(x_subset)
x_flat = x.flatten(1)
residual = residual.flatten(1)
residual_scale_factor = b / sample_subset_size
# 3) add the residual
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
return x_plus_residual.view_as(x)
def get_branges_scales(x, sample_drop_ratio=0.0):
b, n, d = x.shape
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
residual_scale_factor = b / sample_subset_size
return brange, residual_scale_factor
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
if scaling_vector is None:
x_flat = x.flatten(1)
residual = residual.flatten(1)
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
else:
x_plus_residual = scaled_index_add(
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
)
return x_plus_residual
attn_bias_cache: Dict[Tuple, Any] = {}
def get_attn_bias_and_cat(x_list, branges=None):
"""
this will perform the index select, cat the tensors, and provide the attn_bias from cache
"""
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
if all_shapes not in attn_bias_cache.keys():
seqlens = []
for b, x in zip(batch_sizes, x_list):
for _ in range(b):
seqlens.append(x.shape[1])
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
attn_bias._batch_sizes = batch_sizes
attn_bias_cache[all_shapes] = attn_bias
if branges is not None:
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
else:
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
cat_tensors = torch.cat(tensors_bs1, dim=1)
return attn_bias_cache[all_shapes], cat_tensors
def drop_add_residual_stochastic_depth_list(
x_list: List[Tensor],
residual_func: Callable[[Tensor, Any], Tensor],
sample_drop_ratio: float = 0.0,
scaling_vector=None,
) -> Tensor:
# 1) generate random set of indices for dropping samples in the batch
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
branges = [s[0] for s in branges_scales]
residual_scale_factors = [s[1] for s in branges_scales]
# 2) get attention bias and index+concat the tensors
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
# 3) apply residual_func to get residual, and split the result
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
outputs = []
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
return outputs
class NestedTensorBlock(Block):
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
"""
x_list contains a list of tensors to nest together and run
"""
assert isinstance(self.attn, MemEffAttention)
if self.training and self.sample_drop_ratio > 0.0:
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
return self.attn(self.norm1(x), attn_bias=attn_bias)
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
return self.mlp(self.norm2(x))
x_list = drop_add_residual_stochastic_depth_list(
x_list,
residual_func=attn_residual_func,
sample_drop_ratio=self.sample_drop_ratio,
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
)
x_list = drop_add_residual_stochastic_depth_list(
x_list,
residual_func=ffn_residual_func,
sample_drop_ratio=self.sample_drop_ratio,
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
)
return x_list
else:
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
return self.ls2(self.mlp(self.norm2(x)))
attn_bias, x = get_attn_bias_and_cat(x_list)
x = x + attn_residual_func(x, attn_bias=attn_bias)
x = x + ffn_residual_func(x)
return attn_bias.split(x)
def forward(self, x_or_x_list):
if isinstance(x_or_x_list, Tensor):
return super().forward(x_or_x_list)
elif isinstance(x_or_x_list, list):
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
return self.forward_nested(x_or_x_list)
else:
raise AssertionError

View File

@ -0,0 +1,35 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
from torch import nn
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0:
random_tensor.div_(keep_prob)
output = x * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)

View File

@ -0,0 +1,28 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
from typing import Union
import torch
from torch import Tensor
from torch import nn
class LayerScale(nn.Module):
def __init__(
self,
dim: int,
init_values: Union[float, Tensor] = 1e-5,
inplace: bool = False,
) -> None:
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x: Tensor) -> Tensor:
return x.mul_(self.gamma) if self.inplace else x * self.gamma

View File

@ -0,0 +1,41 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
from typing import Callable, Optional
from torch import Tensor, nn
class Mlp(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[..., nn.Module] = nn.GELU,
drop: float = 0.0,
bias: bool = True,
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
self.drop = nn.Dropout(drop)
def forward(self, x: Tensor) -> Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x

View File

@ -0,0 +1,89 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
from typing import Callable, Optional, Tuple, Union
from torch import Tensor
import torch.nn as nn
def make_2tuple(x):
if isinstance(x, tuple):
assert len(x) == 2
return x
assert isinstance(x, int)
return (x, x)
class PatchEmbed(nn.Module):
"""
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
Args:
img_size: Image size.
patch_size: Patch token size.
in_chans: Number of input image channels.
embed_dim: Number of linear projection output channels.
norm_layer: Normalization layer.
"""
def __init__(
self,
img_size: Union[int, Tuple[int, int]] = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
in_chans: int = 3,
embed_dim: int = 768,
norm_layer: Optional[Callable] = None,
flatten_embedding: bool = True,
) -> None:
super().__init__()
image_HW = make_2tuple(img_size)
patch_HW = make_2tuple(patch_size)
patch_grid_size = (
image_HW[0] // patch_HW[0],
image_HW[1] // patch_HW[1],
)
self.img_size = image_HW
self.patch_size = patch_HW
self.patches_resolution = patch_grid_size
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.flatten_embedding = flatten_embedding
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x: Tensor) -> Tensor:
_, _, H, W = x.shape
patch_H, patch_W = self.patch_size
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
x = self.proj(x) # B C H W
H, W = x.size(2), x.size(3)
x = x.flatten(2).transpose(1, 2) # B HW C
x = self.norm(x)
if not self.flatten_embedding:
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
return x
def flops(self) -> float:
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops

View File

@ -0,0 +1,63 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Callable, Optional
from torch import Tensor, nn
import torch.nn.functional as F
class SwiGLUFFN(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[..., nn.Module] = None,
drop: float = 0.0,
bias: bool = True,
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
def forward(self, x: Tensor) -> Tensor:
x12 = self.w12(x)
x1, x2 = x12.chunk(2, dim=-1)
hidden = F.silu(x1) * x2
return self.w3(hidden)
try:
from xformers.ops import SwiGLU
XFORMERS_AVAILABLE = True
except ImportError:
SwiGLU = SwiGLUFFN
XFORMERS_AVAILABLE = False
class SwiGLUFFNFused(SwiGLU):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[..., nn.Module] = None,
drop: float = 0.0,
bias: bool = True,
) -> None:
out_features = out_features or in_features
hidden_features = hidden_features or in_features
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
super().__init__(
in_features=in_features,
hidden_features=hidden_features,
out_features=out_features,
bias=bias,
)

221
depth_anything_v2/dpt.py Normal file
View File

@ -0,0 +1,221 @@
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import Compose
from .dinov2 import DINOv2
from .util.blocks import FeatureFusionBlock, _make_scratch
from .util.transform import Resize, NormalizeImage, PrepareForNet
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class ConvBlock(nn.Module):
def __init__(self, in_feature, out_feature):
super().__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_feature),
nn.ReLU(True)
)
def forward(self, x):
return self.conv_block(x)
class DPTHead(nn.Module):
def __init__(
self,
in_channels,
features=256,
use_bn=False,
out_channels=[256, 512, 1024, 1024],
use_clstoken=False
):
super(DPTHead, self).__init__()
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList([
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
) for out_channel in out_channels
])
self.resize_layers = nn.ModuleList([
nn.ConvTranspose2d(
in_channels=out_channels[0],
out_channels=out_channels[0],
kernel_size=4,
stride=4,
padding=0),
nn.ConvTranspose2d(
in_channels=out_channels[1],
out_channels=out_channels[1],
kernel_size=2,
stride=2,
padding=0),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3],
out_channels=out_channels[3],
kernel_size=3,
stride=2,
padding=1)
])
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(
nn.Sequential(
nn.Linear(2 * in_channels, in_channels),
nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DepthAnythingV2(nn.Module):
def __init__(
self,
encoder='vitl',
features=256,
out_channels=[256, 512, 1024, 1024],
use_bn=False,
use_clstoken=False
):
super(DepthAnythingV2, self).__init__()
self.intermediate_layer_idx = {
'vits': [2, 5, 8, 11],
'vitb': [2, 5, 8, 11],
'vitl': [4, 11, 17, 23],
'vitg': [9, 19, 29, 39]
}
self.encoder = encoder
self.pretrained = DINOv2(model_name=encoder)
self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
def forward(self, x):
patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14
features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True)
depth = self.depth_head(features, patch_h, patch_w)
depth = F.relu(depth)
return depth.squeeze(1)
@torch.no_grad()
def infer_image(self, raw_image, input_size=518):
image, (h, w) = self.image2tensor(raw_image, input_size)
depth = self.forward(image)
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
return depth.cpu().numpy()
def image2tensor(self, raw_image, input_size=518):
transform = Compose([
Resize(
width=input_size,
height=input_size,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
h, w = raw_image.shape[:2]
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0
image = transform({'image': image})['image']
image = torch.from_numpy(image).unsqueeze(0)
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
image = image.to(DEVICE)
return image, (h, w)

View File

@ -0,0 +1,148 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups=1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn == True:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn == True:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn == True:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block.
"""
def __init__(
self,
features,
activation,
deconv=False,
bn=False,
expand=False,
align_corners=True,
size=None
):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups=1
self.expand = expand
out_features = features
if self.expand == True:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size=size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output

View File

@ -0,0 +1,158 @@
import numpy as np
import cv2
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
# resize sample
sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
if self.__resize_target:
if "depth" in sample:
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
if "mask" in sample:
sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
return sample

View File

@ -740,8 +740,8 @@ class FolderDropWidget(QWidget):
def init_ui(self):
main_layout = QVBoxLayout()
main_layout.setSpacing(15)
main_layout.setContentsMargins(15, 15, 15, 15)
main_layout.setSpacing(5)
main_layout.setContentsMargins(0, 0, 0, 0)
# 顶部按钮区域
btn_layout = QHBoxLayout()
@ -750,12 +750,24 @@ class FolderDropWidget(QWidget):
self.reset_btn.setFixedSize(120, 40)
self.reset_btn.setVisible(False)
self.clear_btn = QPushButton("清空选中机组列表")
self.clear_btn = QPushButton("清空")
self.clear_btn.clicked.connect(self.clear_selected)
self.clear_btn.setFixedSize(120, 40)
self.clear_btn.setVisible(False)
self.full_select_btn = QPushButton("全选")
self.full_select_btn.clicked.connect(self.select_all_folders)
self.full_select_btn.setFixedSize(120, 40)
self.full_select_btn.setVisible(False)
# 添加返回按钮
self.back_btn = QPushButton("返回项目选择")
self.back_btn.clicked.connect(lambda: (self.stacked_layout.setCurrentIndex(1) or self.clear_selected() or self.reset_btn.setVisible(True) or self.back_btn.setVisible(False)))
self.back_btn.setVisible(False)
btn_layout.addWidget(self.reset_btn)
btn_layout.addWidget(self.back_btn)
btn_layout.addWidget(self.full_select_btn)
btn_layout.addWidget(self.clear_btn)
btn_layout.addStretch()
main_layout.addLayout(btn_layout)
@ -776,6 +788,8 @@ class FolderDropWidget(QWidget):
# 状态2: 显示第一层文件夹 (项目选择)
self.level1_container = QWidget()
level1_main_layout = QVBoxLayout()
level1_main_layout.setSpacing(0)
level1_main_layout.setContentsMargins(0, 0, 0, 0)
# 添加状态标签
self.level1_title = QLabel("项目选择")
@ -797,6 +811,8 @@ class FolderDropWidget(QWidget):
# 状态3: 显示第二层文件夹 (机组选择)
self.level2_container = QWidget()
level2_main_layout = QVBoxLayout()
level2_main_layout.setSpacing(0)
level2_main_layout.setContentsMargins(0, 0, 0, 0)
# 添加状态标签
self.level2_title = QLabel("机组选择")
@ -811,11 +827,6 @@ class FolderDropWidget(QWidget):
self.level2_list.setSpacing(10)
level2_main_layout.addWidget(self.level2_list)
# 添加返回按钮
self.back_btn = QPushButton("返回项目选择")
self.back_btn.clicked.connect(lambda: self.stacked_layout.setCurrentIndex(1))
level2_main_layout.addWidget(self.back_btn)
self.level2_container.setLayout(level2_main_layout)
self.stacked_layout.addWidget(self.level2_container)
@ -836,6 +847,13 @@ class FolderDropWidget(QWidget):
self.setLayout(main_layout)
def select_all_folders(self):
self.selected_folders.update(
set(item.data(Qt.ItemDataRole.UserRole) for item in self.level2_list.findItems("", Qt.MatchFlag.MatchContains))
)
self.update_checkbox_states()
self.selection_changed.emit(self.get_selected_folders())
def apply_styles(self):
self.prompt_label.setStyleSheet(f"""
{PATH_DISPLAY_STYLE}
@ -872,6 +890,7 @@ class FolderDropWidget(QWidget):
""")
self.selected_group.setStyleSheet(GROUP_BOX_STYLE)
self.full_select_btn.setStyleSheet(BUTTON_STYLE)
self.reset_btn.setStyleSheet(BUTTON_STYLE)
self.clear_btn.setStyleSheet(BUTTON_STYLE)
self.back_btn.setStyleSheet(BUTTON_STYLE)
@ -890,6 +909,7 @@ class FolderDropWidget(QWidget):
self.stacked_layout.setCurrentIndex(0) # 显示提示
self.reset_btn.setVisible(False)
self.clear_btn.setVisible(False)
self.back_btn.setVisible(False)
self.selected_group.setVisible(False)
self.selection_changed.emit([])
@ -904,7 +924,9 @@ class FolderDropWidget(QWidget):
self.load_level1_folders(path)
self.stacked_layout.setCurrentIndex(1) # 显示第一层
self.reset_btn.setVisible(True)
self.back_btn.setVisible(False)
self.clear_btn.setVisible(True)
self.full_select_btn.setVisible(True)
self.selected_group.setVisible(True)
def dragEnterEvent(self, event: QDragEnterEvent):
@ -933,6 +955,8 @@ class FolderDropWidget(QWidget):
def show_level2_folders(self, item):
self.level2_list.clear()
self.reset_btn.setVisible(False)
self.back_btn.setVisible(True)
folder_path = item.data(Qt.ItemDataRole.UserRole)
for sub_item in os.listdir(folder_path):

View File

@ -84,7 +84,7 @@ COMBO_BOX_STYLE = f"""
GROUP_BOX_MIN_WIDTH = 300
GROUP_BOX_MIN_HEIGHT = 120
GROUP_BOX_SPACING = 5
GROUP_BOX_MARGINS = (5, 5, 5, 5)
GROUP_BOX_MARGINS = (1, 1, 1, 1)
GROUP_BOX_STYLE = f"""
QGroupBox {{
font-family: "{FONT_FAMILY}";

126
main.py
View File

@ -1,127 +1,5 @@
from PySide6.QtWidgets import (QApplication, QMainWindow, QWidget, QGridLayout,
QPushButton, QSizePolicy, QSplitter, QToolBar)
from PySide6.QtGui import QFontDatabase
from PySide6.QtCore import Signal, Qt
import os
from info_core.defines import *
from info_core.MyQtClass import ConfigComboBoxGroup, FolderDropWidget, DraggableLine
class ReportGeneratorUI(QMainWindow):
send_baogao_choose_info = Signal(list[str])
def __init__(self):
super().__init__()
# 加载字体
self.load_font()
# 设置窗口属性
self.setWindowTitle("报告生成器")
self.setMinimumSize(WINDOW_MIN_WIDTH, WINDOW_MIN_HEIGHT)
# 主窗口部件
self.central_widget = QWidget()
self.setCentralWidget(self.central_widget)
# 主布局
self.main_layout = QGridLayout(self.central_widget)
self.main_layout.setSpacing(MAIN_LAYOUT_SPACING)
self.main_layout.setContentsMargins(*MAIN_LAYOUT_MARGINS)
# 初始化UI
self.init_ui()
def load_font(self):
"""加载自定义字体"""
if os.path.exists(FONT_PATH):
font_id = QFontDatabase.addApplicationFont(FONT_PATH)
if font_id == -1:
print("字体加载失败,将使用系统默认字体")
else:
print(f"字体文件未找到: {FONT_PATH},将使用系统默认字体")
def init_ui(self):
"""初始化所有UI组件"""
# 第一行:项目信息和人员配置
self.project_group = ConfigComboBoxGroup("项目基本信息")
self.staff_group = ConfigComboBoxGroup("单次检查配置信息", is_project=False)
# 第二行:导入图片路径、填写机组信息
self.picture_group = FolderDropWidget()
# self.image_analysis =
# self.main_layout.addWidget(self.image_analysis, 1, 1)
# 第三行:生成报告按钮(跨两列)
self.create_generate_button()
self.generate_btn.setEnabled(False)
# 创建一个垂直分割器
self.splitter = QSplitter(Qt.Vertical)
self.splitter.setStyleSheet(SPLITTER_STYLE)
# 创建顶部和底部容器
top_container = QWidget()
top_container.setLayout(QGridLayout())
top_container.layout().addWidget(self.project_group, 0, 0)
top_container.layout().addWidget(self.staff_group, 0, 1)
middle_container = QWidget()
middle_container.setLayout(QGridLayout())
middle_container.layout().addWidget(self.picture_group, 0, 0)
# 添加部件到分割器
self.splitter.addWidget(top_container)
self.splitter.addWidget(middle_container)
# 设置主布局
self.main_layout.addWidget(self.splitter, 0, 0, 2, 2) # 占据前两行两列
self.main_layout.addWidget(self.generate_btn, 2, 0, 1, 2)
# 设置分割器初始比例
self.splitter.setStretchFactor(0, 1)
self.splitter.setStretchFactor(1, 4)
self.toolbar = QToolBar()
self.addToolBar(self.toolbar)
self.toolbar.setMovable(False)
self.toolbar.setFloatable(False)
new_action = self.toolbar.addAction("重置布局比例")
self.toolbar.addSeparator()
new_action.triggered.connect(self.reset_splitter)
def reset_splitter(self):
"""重置分割器的比例"""
total_size = sum(self.splitter.sizes()) # 获取当前总大小
self.splitter.setSizes([
int(total_size * 0.2), # 第一部分占 20%(比例 1:4
int(total_size * 0.8) # 第二部分占 80%
])
def on_generate_path_selected(self, path):
self.generate_btn.setEnabled(True)
# search_file_list = []
# if self.image_analysis.check_is_waibu:
# search_file_list.append("外汇总")
# if self.image_analysis.check_is_neibu:
# search_file_list.append("内汇总")
# if self.image_analysis.check_is_fanglei:
# search_file_list.append("防汇总")
# self.send_baogao_choose_info.emit(search_file_list)
def create_button(self, text):
"""创建统一风格的按钮"""
btn = QPushButton(text)
btn.setStyleSheet(BUTTON_STYLE)
btn.setFixedSize(BUTTON_WIDTH, BUTTON_HEIGHT)
return btn
def create_generate_button(self):
"""创建生成报告按钮"""
self.generate_btn = QPushButton("生成报告")
self.generate_btn.setStyleSheet(PRIMARY_BUTTON_STYLE)
self.generate_btn.setFixedHeight(50)
self.generate_btn.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed)
from PySide6.QtWidgets import QApplication
from MainWindow.mainwindow import ReportGeneratorUI
if __name__ == "__main__":
app = QApplication([])

176
tool/lighter.py Normal file
View File

@ -0,0 +1,176 @@
import cv2
import numpy as np
# import rawpy
# from PIL import Image
# from tqdm import tqdm
# import tkinter as tk
#from tkinter import filedialog
#from concurrent.futures import ThreadPoolExecutor
#import argparse
#import os
#import torch
#from depth_anything_v2.dpt import DepthAnythingV2
#from utils import specify_name_group_blade,get_name
#parser = argparse.ArgumentParser(description='Depth Anything V2')
# parser.add_argument('--input-size', type=int, default=518)
# parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
# args = parser.parse_args()
def extraction_win_lamina_mask(raw_image, depth_anything):
# 前面读的都是RGB图像深度估计需要BGR即下面是把RGB→BGR
raw_image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB)
depth = depth_anything.infer_image(raw_image)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
_, otsu_mask = cv2.threshold(depth, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return otsu_mask
def check_overexposure(image, lamina_mask,threshold):
"""
检查图像中是否有过曝区域
:param image: 输入图像
:param threshold: 亮度值的阈值像素值超过该值则认为是过曝区域
:return: 一个二值图像过曝区域为白色其它区域为黑色
"""
# 转换为浮动数据类型并归一化
image_float = image.astype(np.float32)
# 获取每个像素的亮度值(可以使用 YUV 或 RGB 亮度)
gray_image = cv2.cvtColor(image_float, cv2.COLOR_BGR2GRAY)
# 标记过曝区域,亮度大于阈值的像素为过曝区域
overexposure_mask = gray_image > threshold
overexposure_mask = (lamina_mask == 255) & overexposure_mask #只取叶片的亮光区mask
overexposure_number = np.sum(overexposure_mask * 1)
overexposed_pixels = gray_image[overexposure_mask]
# 计算曝光区域的平均亮度
if overexposed_pixels.size > 0:
avg_overexposed_value = np.mean(overexposed_pixels)
else:
avg_overexposed_value = 0 # 如果没有曝光区域,返回 0
return overexposure_mask, avg_overexposed_value,overexposure_number
def check_shawn(image,lamina_mask, threshold):
"""
检查图像中是否有阴影区域
:param image: 输入图像
:param threshold: 亮度值的阈值像素值小于该值则认为是过阴影域
:return: 一个二值图像过曝区域为白色其它区域为黑色
"""
# 转换为浮动数据类型并归一化
image_float = image.astype(np.float32)
# 获取每个像素的亮度值(可以使用 YUV 或 RGB 亮度)
gray_image = cv2.cvtColor(image_float, cv2.COLOR_BGR2GRAY)
# 标记阴影区域,亮度小于阈值的像素为阴影区域
shawn_mask = gray_image < threshold
shawn_mask = (lamina_mask == 255) & shawn_mask
shawn_number = np.sum(shawn_mask * 1)
shawn_pixels = gray_image[shawn_mask]
# 计算阴影区域的平均亮度
if shawn_pixels.size > 0:
avg_shawn_value = np.mean(shawn_pixels)
else:
avg_shawn_value = 0
return shawn_mask, avg_shawn_value,shawn_number
def smooth_overexposed_regions(image, overexposure_mask, kernel_size=(15, 15)):
"""
对过曝区域进行平滑处理修复与周围区域的过渡
:param image: 输入图像
:param overexposure_mask: 过曝区域的掩码
:param kernel_size: 高斯核大小
:return: 平滑过曝区域后的图像
"""
# 使用高斯模糊平滑过曝区域和周围区域
smoothed_image = cv2.GaussianBlur(image, kernel_size, 0)
# 将平滑后的图像和原始图像合成,修复过曝区域
fixed_image = np.where(overexposure_mask[..., None] == 255, image,smoothed_image)
return fixed_image
def bilateral_filter_adjustment(image, high_light_mask, d=15, sigma_color=75, sigma_space=75):
"""
使用双边滤波器平滑高光区域与周围区域的过渡
:param image: 输入图像
:param high_light_mask: 高光区域的掩码
:param d: 邻域的直径
:param sigma_color: 颜色空间的标准差
:param sigma_space: 坐标空间的标准差
:return: 平滑后的图像
"""
# 对整个图像应用双边滤波
filtered_image = cv2.bilateralFilter(image, d, sigma_color, sigma_space)
# 合成平滑后的图像和原图,保留非高光部分
final_image = np.where(high_light_mask[..., None] == 0, image, filtered_image)
return final_image
def adjust_highlights_shadows(image, threshold_shawn,threshold, depth_anything):
lamina_mask = extraction_win_lamina_mask(image, depth_anything)
shawn_mask,avg_shawn_value,shawn_number = check_shawn(image,lamina_mask,threshold_shawn)
# 调整亮度gamma < 1 时变亮gamma > 1 时变暗
gamma = 1 - (threshold_shawn-avg_shawn_value)/255.0
# print('阴影区调整的gama: '+str(gamma))#+str('\n'))
lookup_table = np.array([((i / 255.0) ** gamma) * 255 for i in range(256)]).astype('uint8')
# 应用 gamma 校正
if shawn_number !=0:
image[shawn_mask == True] = cv2.LUT(image[shawn_mask == True], lookup_table)
gamma_corrected_image = image
else:
gamma_corrected_image = image
#gamma_corrected_image = cv2.LUT(image, lookup_table)
#寻找过爆区域
overexposure_mask,avg_overexposed_value,overexposure_number = check_overexposure(gamma_corrected_image,lamina_mask,threshold)
reduction_factor = 1-(avg_overexposed_value-threshold) / 255
#reduction_factor = (avg_overexposed_value/255)*scale
# print("降低曝光区比例:" + str(reduction_factor))
# 调整亮度gamma < 1 时变亮越小越亮gamma > 1 时变暗(越大越暗)
print((1+reduction_factor))
lookup_table = np.array([((i / 255.0) ** (1+reduction_factor)) * 255 for i in range(256)]).astype('uint8')
# 应用 gamma 校正
if overexposure_number !=0:
gamma_corrected_image[overexposure_mask == True] = cv2.LUT(gamma_corrected_image[overexposure_mask == True], lookup_table)
#gamma_corrected_image[overexposure_mask == True] = np.clip(gamma_corrected_image[overexposure_mask == True] * reduction_factor, 0, 255)
#smoothed_image = smooth_overexposed_regions(gamma_corrected_image, overexposure_mask)
#smoothed_image = bilateral_filter_adjustment(gamma_corrected_image, overexposure_mask, d=15, sigma_color=75, sigma_space=75)
return gamma_corrected_image
# path=r'/home/dtyx/下载/1_涂层损伤_叶尖3m_2m_一般_紧急_一般_尽快打磨维修.jpg'
# from time import time
# if __name__ == "__main__":
# # input_dir = input("请输入处理图片路径: ")
# # output_dir = input("请输入保存图片路径: ")
# time_start = time()
# imgpath = path
# img = cv2.imdecode(np.fromfile(imgpath, dtype=np.uint8), cv2.IMREAD_COLOR)
# cv2.imshow('img',cv2.resize(img,(800,600)))
# mask=adjust_highlights_shadows(img,180,253)
# mask=cv2.resize(mask,(800,600))
# time_end = time()
# print("Time used:", time_end - time_start)
# cv2.imshow('mask',mask)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# # gamma = float(input("请输入 gamma 值: "))

18
tool/model_start.py Normal file
View File

@ -0,0 +1,18 @@
import torch
from depth_anything_v2.dpt import DepthAnythingV2
def model_start(model_path):
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
depth_anything = DepthAnythingV2()
depth_anything.load_state_dict(
torch.load(f'{model_path}', map_location='cpu'))
depth_anything = depth_anything.to(DEVICE).eval()
print("model loaded")
return depth_anything

141
tool/process_image.py Normal file
View File

@ -0,0 +1,141 @@
import os
import numpy as np
import cv2
from tool.lighter import adjust_highlights_shadows
from concurrent.futures import ThreadPoolExecutor
from PIL import Image
import piexif
# parser = argparse.ArgumentParser(description='Depth Anything V2')
# parser.add_argument('--input-paths', type=str, nargs='+', required=True,
# help='输入文件夹列表(多个路径,用空格分隔)')
# parser.add_argument('--output-path', type=str, default='./output',
# help="按输出路径的结构输出处理好的图片")
# parser.add_argument('--model-path', type=str, default='./model/depth_anything_v2_vitl.pth',
# help='模型路径')
# args = parser.parse_args()
def process_single_image(img_path, depth_anything):
"""处理单个图片
Args:
img_path: 图片路径
Returns:
tuple: (处理后的图片numpy数组, 原始图片路径)
"""
# 使用OpenCV读取图片
img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), cv2.IMREAD_COLOR)
if img is None:
raise ValueError(f"无法读取图片: {img_path}")
# 处理图片 - 这里假设adjust_highlights_shadows能处理OpenCV格式的图片
processed_img = adjust_highlights_shadows(img, 180, 253, depth_anything)
return processed_img, img_path
def save_image_with_exif(input_path, output_path, processed_img):
"""保存图片并保留EXIF信息
Args:
input_path: 原始图片路径
output_path: 输出图片路径
processed_img: 处理后的numpy数组图片
"""
# 确保输出目录存在
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# 读取原始图片的EXIF信息
exif_dict = None
try:
with exif_lock: # 使用锁防止多线程同时读取EXIF
with Image.open(input_path) as img:
if 'exif' in img.info:
exif_dict = piexif.load(img.info['exif'])
except Exception as e:
print(f"Warning: 无法读取 {input_path} 的EXIF信息: {str(e)}")
# 将OpenCV格式转换为PIL格式以便保存EXIF
processed_img_rgb = cv2.cvtColor(processed_img, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(processed_img_rgb)
# 保存图片
try:
if exif_dict:
pil_img.save(output_path, exif=piexif.dump(exif_dict))
else:
pil_img.save(output_path)
except Exception as e:
print(f"Error: 无法保存图片 {output_path}: {str(e)}")
raise
def process_single_file(input_path, output_root, input_base, depth_anything):
"""处理单个文件"""
try:
# 计算相对路径以保持文件夹结构
rel_path = os.path.relpath(os.path.dirname(input_path), start=input_base)
output_dir = os.path.join(output_root, rel_path)
output_path = os.path.join(output_dir, os.path.basename(input_path))
# 处理图片
processed_img, _ = process_single_image(input_path, depth_anything)
# 保存图片
save_image_with_exif(input_path, output_path, processed_img)
print(f"Processed and saved: {output_path}")
except Exception as e:
print(f"Error processing {input_path}: {str(e)}")
def process_images(input_paths, output_root, depth_anything, workers=4):
"""处理所有图片并保持原文件夹结构(多线程版本)
Args:
input_paths: 输入路径列表
output_root: 输出根目录
workers: 线程池大小
"""
# 收集所有需要处理的文件
all_files = []
for input_path in input_paths:
for root, dirs, files in os.walk(input_path):
for file in files:
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff')):
input_file_path = os.path.join(root, file)
all_files.append((input_file_path, input_path))
# 使用线程池处理文件
with ThreadPoolExecutor(max_workers=workers) as executor:
futures = []
for file_path, input_base in all_files:
futures.append(
executor.submit(
process_single_file,
file_path,
output_root,
input_base,
depth_anything
)
)
# 等待所有任务完成
for future in futures:
try:
future.result()
except Exception as e:
print(f"Error in processing: {str(e)}")
# if __name__ == '__main__':
# model_path = args.model_path
# input_paths = args.input_paths
# output_path = args.output_path
# # 线程锁防止多线程同时访问EXIF数据时出现问题
# exif_lock = threading.Lock()
# input_paths = ["/home/dtyx/桌面/yhh/ReportGenerator/测试数据/山东国华无棣风电场叶片外部数据/A131301",]
# model_path = "./model/depth_anything_v2_vitl.pth"
# output_path = "./output"
# #启动模型
# depth_anything = model_start(model_path)
# # 创建输出目录
# os.makedirs(output_path, exist_ok=True)
# # 处理所有图片
# process_images(input_paths, output_path, depth_anything)

Binary file not shown.

After

Width:  |  Height:  |  Size: 453 KiB