diff --git a/.gitignore b/.gitignore index cb0f8dc..9532559 100644 --- a/.gitignore +++ b/.gitignore @@ -201,3 +201,6 @@ __marimo__/ # Streamlit .streamlit/secrets.toml + +测试数据/ +model/ diff --git a/.vscode/launch.json b/.vscode/launch.json new file mode 100644 index 0000000..65367d6 --- /dev/null +++ b/.vscode/launch.json @@ -0,0 +1,12 @@ +{ + "version": "0.2.0", + "configurations": [ + { + "name": "Run Main", + "type": "debugpy", + "request": "launch", + "program": "${workspaceFolder}/main.py", // 修改为你的主文件路径 + "console": "integratedTerminal" + } + ] +} \ No newline at end of file diff --git a/MainWindow/mainwindow.py b/MainWindow/mainwindow.py new file mode 100644 index 0000000..cf38dee --- /dev/null +++ b/MainWindow/mainwindow.py @@ -0,0 +1,127 @@ +from PySide6.QtWidgets import (QMainWindow, QWidget, QGridLayout, + QPushButton, QSizePolicy, QSplitter, QToolBar) +from PySide6.QtGui import QFontDatabase +from PySide6.QtCore import Signal, Qt + +import os +from info_core.defines import * +from info_core.MyQtClass import ConfigComboBoxGroup, FolderDropWidget + + +class ReportGeneratorUI(QMainWindow): + send_baogao_choose_info = Signal(list[str]) + + def __init__(self): + super().__init__() + # 加载字体 + self.load_font() + + # 设置窗口属性 + self.setWindowTitle("报告生成器") + self.setMinimumSize(WINDOW_MIN_WIDTH, WINDOW_MIN_HEIGHT) + + # 主窗口部件 + self.central_widget = QWidget() + self.setCentralWidget(self.central_widget) + + # 主布局 + self.main_layout = QGridLayout(self.central_widget) + self.main_layout.setSpacing(MAIN_LAYOUT_SPACING) + self.main_layout.setContentsMargins(*MAIN_LAYOUT_MARGINS) + + # 初始化UI + self.init_ui() + + + def load_font(self): + """加载自定义字体""" + if os.path.exists(FONT_PATH): + font_id = QFontDatabase.addApplicationFont(FONT_PATH) + if font_id == -1: + print("字体加载失败,将使用系统默认字体") + else: + print(f"字体文件未找到: {FONT_PATH},将使用系统默认字体") + + def init_ui(self): + """初始化所有UI组件""" + # 第一行:项目信息和人员配置 + self.project_group = ConfigComboBoxGroup("项目基本信息") + self.staff_group = ConfigComboBoxGroup("单次检查配置信息", is_project=False) + # 第二行:导入图片路径、填写机组信息 + self.picture_group = FolderDropWidget() + # self.image_analysis = + # self.main_layout.addWidget(self.image_analysis, 1, 1) + # 第三行:生成报告按钮(跨两列) + self.fill_turbine_info_button() + self.fill_btn.clicked.connect(self.on_fill_clicked) + + # 创建一个垂直分割器 + self.splitter = QSplitter(Qt.Vertical) + self.splitter.setStyleSheet(SPLITTER_STYLE) + # 创建顶部和底部容器 + top_container = QWidget() + top_container.setLayout(QGridLayout()) + top_container.layout().addWidget(self.project_group, 0, 0) + top_container.layout().addWidget(self.staff_group, 0, 1) + + middle_container = QWidget() + middle_container.setLayout(QGridLayout()) + middle_container.layout().addWidget(self.picture_group, 0, 0) + + # 添加部件到分割器 + self.splitter.addWidget(top_container) + self.splitter.addWidget(middle_container) + + # 设置主布局 + self.main_layout.addWidget(self.splitter, 0, 0, 2, 2) # 占据前两行两列 + self.main_layout.addWidget(self.fill_btn, 2, 0, 1, 2) + + # 设置分割器初始比例 + self.splitter.setStretchFactor(0, 1) + self.splitter.setStretchFactor(1, 4) + + self.toolbar = QToolBar() + self.addToolBar(self.toolbar) + self.toolbar.setMovable(False) + self.toolbar.setFloatable(False) + new_action = self.toolbar.addAction("重置布局比例") + self.toolbar.addSeparator() + new_action.triggered.connect(self.reset_splitter) + + def reset_splitter(self): + """重置分割器的比例""" + total_size = sum(self.splitter.sizes()) # 获取当前总大小 + self.splitter.setSizes([ + int(total_size * 0.2), # 第一部分占 20%(比例 1:4) + int(total_size * 0.8) # 第二部分占 80% + ]) + + def on_fill_clicked(self): + """填写信息""" + # 读取各个配置信息 + turbine_file_list = self.picture_group.get_selected_folders() + print(turbine_file_list) + + # search_file_list = [] + # if self.image_analysis.check_is_waibu: + # search_file_list.append("外汇总") + # if self.image_analysis.check_is_neibu: + # search_file_list.append("内汇总") + # if self.image_analysis.check_is_fanglei: + # search_file_list.append("防汇总") + # self.send_baogao_choose_info.emit(search_file_list) + + def create_button(self, text): + """创建统一风格的按钮""" + btn = QPushButton(text) + btn.setStyleSheet(BUTTON_STYLE) + btn.setFixedSize(BUTTON_WIDTH, BUTTON_HEIGHT) + return btn + + def fill_turbine_info_button(self): + """创建生成报告按钮""" + self.fill_btn = QPushButton("开始填写各个机组信息") + self.fill_btn.setStyleSheet(PRIMARY_BUTTON_STYLE) + self.fill_btn.setFixedHeight(50) + self.fill_btn.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed) + \ No newline at end of file diff --git a/README.md b/README.md index 3e51c71..29797d7 100644 --- a/README.md +++ b/README.md @@ -3,5 +3,7 @@ - 数据预处理:阴暗处亮度增加,细节增强。 - 数据报告生成:基于模板批量生成报告。 - -![项目架构](工具流程.png) \ No newline at end of file +# 项目架构图 +![项目架构](工具流程.png) +# 预处理流程图 +![预处理流程](原始数据预处理流程图.png) \ No newline at end of file diff --git a/depth_anything_v2/dinov2.py b/depth_anything_v2/dinov2.py new file mode 100644 index 0000000..63907a7 --- /dev/null +++ b/depth_anything_v2/dinov2.py @@ -0,0 +1,416 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# +# This source code is licensed under the Apache License, Version 2.0 +# found in the LICENSE file in the root directory of this source tree. + +# References: +# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py + +from functools import partial +import math +import logging +from typing import Sequence, Tuple, Union, Callable + +import torch +import torch.nn as nn +import torch.utils.checkpoint +from torch.nn.init import trunc_normal_ + +from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block + + +logger = logging.getLogger("dinov2") + + +def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module: + if not depth_first and include_root: + fn(module=module, name=name) + for child_name, child_module in module.named_children(): + child_name = ".".join((name, child_name)) if name else child_name + named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) + if depth_first and include_root: + fn(module=module, name=name) + return module + + +class BlockChunk(nn.ModuleList): + def forward(self, x): + for b in self: + x = b(x) + return x + + +class DinoVisionTransformer(nn.Module): + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4.0, + qkv_bias=True, + ffn_bias=True, + proj_bias=True, + drop_path_rate=0.0, + drop_path_uniform=False, + init_values=None, # for layerscale: None or 0 => no layerscale + embed_layer=PatchEmbed, + act_layer=nn.GELU, + block_fn=Block, + ffn_layer="mlp", + block_chunks=1, + num_register_tokens=0, + interpolate_antialias=False, + interpolate_offset=0.1, + ): + """ + Args: + img_size (int, tuple): input image size + patch_size (int, tuple): patch size + in_chans (int): number of input channels + embed_dim (int): embedding dimension + depth (int): depth of transformer + num_heads (int): number of attention heads + mlp_ratio (int): ratio of mlp hidden dim to embedding dim + qkv_bias (bool): enable bias for qkv if True + proj_bias (bool): enable bias for proj in attn if True + ffn_bias (bool): enable bias for ffn if True + drop_path_rate (float): stochastic depth rate + drop_path_uniform (bool): apply uniform drop rate across blocks + weight_init (str): weight init scheme + init_values (float): layer-scale init values + embed_layer (nn.Module): patch embedding layer + act_layer (nn.Module): MLP activation layer + block_fn (nn.Module): transformer block class + ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" + block_chunks: (int) split block sequence into block_chunks units for FSDP wrap + num_register_tokens: (int) number of extra cls tokens (so-called "registers") + interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings + interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings + """ + super().__init__() + norm_layer = partial(nn.LayerNorm, eps=1e-6) + + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + self.num_tokens = 1 + self.n_blocks = depth + self.num_heads = num_heads + self.patch_size = patch_size + self.num_register_tokens = num_register_tokens + self.interpolate_antialias = interpolate_antialias + self.interpolate_offset = interpolate_offset + + self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) + assert num_register_tokens >= 0 + self.register_tokens = ( + nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None + ) + + if drop_path_uniform is True: + dpr = [drop_path_rate] * depth + else: + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + + if ffn_layer == "mlp": + logger.info("using MLP layer as FFN") + ffn_layer = Mlp + elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": + logger.info("using SwiGLU layer as FFN") + ffn_layer = SwiGLUFFNFused + elif ffn_layer == "identity": + logger.info("using Identity layer as FFN") + + def f(*args, **kwargs): + return nn.Identity() + + ffn_layer = f + else: + raise NotImplementedError + + blocks_list = [ + block_fn( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + proj_bias=proj_bias, + ffn_bias=ffn_bias, + drop_path=dpr[i], + norm_layer=norm_layer, + act_layer=act_layer, + ffn_layer=ffn_layer, + init_values=init_values, + ) + for i in range(depth) + ] + if block_chunks > 0: + self.chunked_blocks = True + chunked_blocks = [] + chunksize = depth // block_chunks + for i in range(0, depth, chunksize): + # this is to keep the block index consistent if we chunk the block list + chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) + self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) + else: + self.chunked_blocks = False + self.blocks = nn.ModuleList(blocks_list) + + self.norm = norm_layer(embed_dim) + self.head = nn.Identity() + + self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) + + self.init_weights() + + def init_weights(self): + trunc_normal_(self.pos_embed, std=0.02) + nn.init.normal_(self.cls_token, std=1e-6) + if self.register_tokens is not None: + nn.init.normal_(self.register_tokens, std=1e-6) + named_apply(init_weights_vit_timm, self) + + def interpolate_pos_encoding(self, x, w, h): + previous_dtype = x.dtype + npatch = x.shape[1] - 1 + N = self.pos_embed.shape[1] - 1 + if npatch == N and w == h: + return self.pos_embed + pos_embed = self.pos_embed.float() + class_pos_embed = pos_embed[:, 0] + patch_pos_embed = pos_embed[:, 1:] + dim = x.shape[-1] + w0 = w // self.patch_size + h0 = h // self.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + # DINOv2 with register modify the interpolate_offset from 0.1 to 0.0 + w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset + # w0, h0 = w0 + 0.1, h0 + 0.1 + + sqrt_N = math.sqrt(N) + sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2), + scale_factor=(sx, sy), + # (int(w0), int(h0)), # to solve the upsampling shape issue + mode="bicubic" + ) + # antialias=self.interpolate_antialias + # ) + + assert int(w0) == patch_pos_embed.shape[-2] + assert int(h0) == patch_pos_embed.shape[-1] + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype) + + def prepare_tokens_with_masks(self, x, masks=None): + B, nc, w, h = x.shape + x = self.patch_embed(x) + if masks is not None: + x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) + + x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) + x = x + self.interpolate_pos_encoding(x, w, h) + + if self.register_tokens is not None: + x = torch.cat( + ( + x[:, :1], + self.register_tokens.expand(x.shape[0], -1, -1), + x[:, 1:], + ), + dim=1, + ) + + return x + + def forward_features_list(self, x_list, masks_list): + x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] + for blk in self.blocks: + x = blk(x) + + all_x = x + output = [] + for x, masks in zip(all_x, masks_list): + x_norm = self.norm(x) + output.append( + { + "x_norm_clstoken": x_norm[:, 0], + "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], + "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], + "x_prenorm": x, + "masks": masks, + } + ) + return output + + def forward_features(self, x, masks=None): + if isinstance(x, list): + return self.forward_features_list(x, masks) + + x = self.prepare_tokens_with_masks(x, masks) + + for blk in self.blocks: + x = blk(x) + + x_norm = self.norm(x) + return { + "x_norm_clstoken": x_norm[:, 0], + "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], + "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], + "x_prenorm": x, + "masks": masks, + } + + def _get_intermediate_layers_not_chunked(self, x, n=1): + x = self.prepare_tokens_with_masks(x) + # If n is an int, take the n last blocks. If it's a list, take them + output, total_block_len = [], len(self.blocks) + blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n + for i, blk in enumerate(self.blocks): + x = blk(x) + if i in blocks_to_take: + output.append(x) + assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" + return output + + def _get_intermediate_layers_chunked(self, x, n=1): + x = self.prepare_tokens_with_masks(x) + output, i, total_block_len = [], 0, len(self.blocks[-1]) + # If n is an int, take the n last blocks. If it's a list, take them + blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n + for block_chunk in self.blocks: + for blk in block_chunk[i:]: # Passing the nn.Identity() + x = blk(x) + if i in blocks_to_take: + output.append(x) + i += 1 + assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" + return output + + def get_intermediate_layers( + self, + x: torch.Tensor, + n: Union[int, Sequence] = 1, # Layers or n last layers to take + reshape: bool = False, + return_class_token: bool = False, + norm=True + ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: + if self.chunked_blocks: + outputs = self._get_intermediate_layers_chunked(x, n) + else: + outputs = self._get_intermediate_layers_not_chunked(x, n) + if norm: + outputs = [self.norm(out) for out in outputs] + class_tokens = [out[:, 0] for out in outputs] + outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs] + if reshape: + B, _, w, h = x.shape + outputs = [ + out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous() + for out in outputs + ] + if return_class_token: + return tuple(zip(outputs, class_tokens)) + return tuple(outputs) + + def forward(self, *args, is_training=False, **kwargs): + ret = self.forward_features(*args, **kwargs) + if is_training: + return ret + else: + return self.head(ret["x_norm_clstoken"]) + + +def init_weights_vit_timm(module: nn.Module, name: str = ""): + """ViT weight initialization, original timm impl (for reproducibility)""" + if isinstance(module, nn.Linear): + trunc_normal_(module.weight, std=0.02) + if module.bias is not None: + nn.init.zeros_(module.bias) + + +def vit_small(patch_size=16, num_register_tokens=0, **kwargs): + model = DinoVisionTransformer( + patch_size=patch_size, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4, + block_fn=partial(Block, attn_class=MemEffAttention), + num_register_tokens=num_register_tokens, + **kwargs, + ) + return model + + +def vit_base(patch_size=16, num_register_tokens=0, **kwargs): + model = DinoVisionTransformer( + patch_size=patch_size, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + block_fn=partial(Block, attn_class=MemEffAttention), + num_register_tokens=num_register_tokens, + **kwargs, + ) + return model + + +def vit_large(patch_size=16, num_register_tokens=0, **kwargs): + model = DinoVisionTransformer( + patch_size=patch_size, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4, + block_fn=partial(Block, attn_class=MemEffAttention), + num_register_tokens=num_register_tokens, + **kwargs, + ) + return model + + +def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs): + """ + Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 + """ + model = DinoVisionTransformer( + patch_size=patch_size, + embed_dim=1536, + depth=40, + num_heads=24, + mlp_ratio=4, + block_fn=partial(Block, attn_class=MemEffAttention), + num_register_tokens=num_register_tokens, + **kwargs, + ) + return model + + +def DINOv2(model_name): + model_zoo = { + "vits": vit_small, + "vitb": vit_base, + "vitl": vit_large, + "vitg": vit_giant2 + } + + return model_zoo[model_name]( + img_size=518, + patch_size=14, + init_values=1.0, + ffn_layer="mlp" if model_name != "vitg" else "swiglufused", + block_chunks=0, + num_register_tokens=0, + interpolate_antialias=False, + interpolate_offset=0.1 + ) diff --git a/depth_anything_v2/dinov2_layers/__init__.py b/depth_anything_v2/dinov2_layers/__init__.py new file mode 100644 index 0000000..8120f4b --- /dev/null +++ b/depth_anything_v2/dinov2_layers/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from .mlp import Mlp +from .patch_embed import PatchEmbed +from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused +from .block import NestedTensorBlock +from .attention import MemEffAttention diff --git a/depth_anything_v2/dinov2_layers/attention.py b/depth_anything_v2/dinov2_layers/attention.py new file mode 100644 index 0000000..815a2bf --- /dev/null +++ b/depth_anything_v2/dinov2_layers/attention.py @@ -0,0 +1,83 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# References: +# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py + +import logging + +from torch import Tensor +from torch import nn + + +logger = logging.getLogger("dinov2") + + +try: + from xformers.ops import memory_efficient_attention, unbind, fmha + + XFORMERS_AVAILABLE = True +except ImportError: + logger.warning("xFormers not available") + XFORMERS_AVAILABLE = False + + +class Attention(nn.Module): + def __init__( + self, + dim: int, + num_heads: int = 8, + qkv_bias: bool = False, + proj_bias: bool = True, + attn_drop: float = 0.0, + proj_drop: float = 0.0, + ) -> None: + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = head_dim**-0.5 + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim, bias=proj_bias) + self.proj_drop = nn.Dropout(proj_drop) + + def forward(self, x: Tensor) -> Tensor: + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + + q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] + attn = q @ k.transpose(-2, -1) + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class MemEffAttention(Attention): + def forward(self, x: Tensor, attn_bias=None) -> Tensor: + if not XFORMERS_AVAILABLE: + assert attn_bias is None, "xFormers is required for nested tensors usage" + return super().forward(x) + + B, N, C = x.shape + qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) + + q, k, v = unbind(qkv, 2) + + x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) + x = x.reshape([B, N, C]) + + x = self.proj(x) + x = self.proj_drop(x) + return x + + \ No newline at end of file diff --git a/depth_anything_v2/dinov2_layers/block.py b/depth_anything_v2/dinov2_layers/block.py new file mode 100644 index 0000000..25488f5 --- /dev/null +++ b/depth_anything_v2/dinov2_layers/block.py @@ -0,0 +1,252 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# References: +# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py + +import logging +from typing import Callable, List, Any, Tuple, Dict + +import torch +from torch import nn, Tensor + +from .attention import Attention, MemEffAttention +from .drop_path import DropPath +from .layer_scale import LayerScale +from .mlp import Mlp + + +logger = logging.getLogger("dinov2") + + +try: + from xformers.ops import fmha + from xformers.ops import scaled_index_add, index_select_cat + + XFORMERS_AVAILABLE = True +except ImportError: + logger.warning("xFormers not available") + XFORMERS_AVAILABLE = False + + +class Block(nn.Module): + def __init__( + self, + dim: int, + num_heads: int, + mlp_ratio: float = 4.0, + qkv_bias: bool = False, + proj_bias: bool = True, + ffn_bias: bool = True, + drop: float = 0.0, + attn_drop: float = 0.0, + init_values=None, + drop_path: float = 0.0, + act_layer: Callable[..., nn.Module] = nn.GELU, + norm_layer: Callable[..., nn.Module] = nn.LayerNorm, + attn_class: Callable[..., nn.Module] = Attention, + ffn_layer: Callable[..., nn.Module] = Mlp, + ) -> None: + super().__init__() + # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}") + self.norm1 = norm_layer(dim) + self.attn = attn_class( + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + proj_bias=proj_bias, + attn_drop=attn_drop, + proj_drop=drop, + ) + self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = ffn_layer( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop, + bias=ffn_bias, + ) + self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() + self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.sample_drop_ratio = drop_path + + def forward(self, x: Tensor) -> Tensor: + def attn_residual_func(x: Tensor) -> Tensor: + return self.ls1(self.attn(self.norm1(x))) + + def ffn_residual_func(x: Tensor) -> Tensor: + return self.ls2(self.mlp(self.norm2(x))) + + if self.training and self.sample_drop_ratio > 0.1: + # the overhead is compensated only for a drop path rate larger than 0.1 + x = drop_add_residual_stochastic_depth( + x, + residual_func=attn_residual_func, + sample_drop_ratio=self.sample_drop_ratio, + ) + x = drop_add_residual_stochastic_depth( + x, + residual_func=ffn_residual_func, + sample_drop_ratio=self.sample_drop_ratio, + ) + elif self.training and self.sample_drop_ratio > 0.0: + x = x + self.drop_path1(attn_residual_func(x)) + x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 + else: + x = x + attn_residual_func(x) + x = x + ffn_residual_func(x) + return x + + +def drop_add_residual_stochastic_depth( + x: Tensor, + residual_func: Callable[[Tensor], Tensor], + sample_drop_ratio: float = 0.0, +) -> Tensor: + # 1) extract subset using permutation + b, n, d = x.shape + sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) + brange = (torch.randperm(b, device=x.device))[:sample_subset_size] + x_subset = x[brange] + + # 2) apply residual_func to get residual + residual = residual_func(x_subset) + + x_flat = x.flatten(1) + residual = residual.flatten(1) + + residual_scale_factor = b / sample_subset_size + + # 3) add the residual + x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) + return x_plus_residual.view_as(x) + + +def get_branges_scales(x, sample_drop_ratio=0.0): + b, n, d = x.shape + sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) + brange = (torch.randperm(b, device=x.device))[:sample_subset_size] + residual_scale_factor = b / sample_subset_size + return brange, residual_scale_factor + + +def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None): + if scaling_vector is None: + x_flat = x.flatten(1) + residual = residual.flatten(1) + x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) + else: + x_plus_residual = scaled_index_add( + x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor + ) + return x_plus_residual + + +attn_bias_cache: Dict[Tuple, Any] = {} + + +def get_attn_bias_and_cat(x_list, branges=None): + """ + this will perform the index select, cat the tensors, and provide the attn_bias from cache + """ + batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list] + all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list)) + if all_shapes not in attn_bias_cache.keys(): + seqlens = [] + for b, x in zip(batch_sizes, x_list): + for _ in range(b): + seqlens.append(x.shape[1]) + attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens) + attn_bias._batch_sizes = batch_sizes + attn_bias_cache[all_shapes] = attn_bias + + if branges is not None: + cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1]) + else: + tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list) + cat_tensors = torch.cat(tensors_bs1, dim=1) + + return attn_bias_cache[all_shapes], cat_tensors + + +def drop_add_residual_stochastic_depth_list( + x_list: List[Tensor], + residual_func: Callable[[Tensor, Any], Tensor], + sample_drop_ratio: float = 0.0, + scaling_vector=None, +) -> Tensor: + # 1) generate random set of indices for dropping samples in the batch + branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list] + branges = [s[0] for s in branges_scales] + residual_scale_factors = [s[1] for s in branges_scales] + + # 2) get attention bias and index+concat the tensors + attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges) + + # 3) apply residual_func to get residual, and split the result + residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore + + outputs = [] + for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors): + outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x)) + return outputs + + +class NestedTensorBlock(Block): + def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]: + """ + x_list contains a list of tensors to nest together and run + """ + assert isinstance(self.attn, MemEffAttention) + + if self.training and self.sample_drop_ratio > 0.0: + + def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: + return self.attn(self.norm1(x), attn_bias=attn_bias) + + def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: + return self.mlp(self.norm2(x)) + + x_list = drop_add_residual_stochastic_depth_list( + x_list, + residual_func=attn_residual_func, + sample_drop_ratio=self.sample_drop_ratio, + scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None, + ) + x_list = drop_add_residual_stochastic_depth_list( + x_list, + residual_func=ffn_residual_func, + sample_drop_ratio=self.sample_drop_ratio, + scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None, + ) + return x_list + else: + + def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: + return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias)) + + def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: + return self.ls2(self.mlp(self.norm2(x))) + + attn_bias, x = get_attn_bias_and_cat(x_list) + x = x + attn_residual_func(x, attn_bias=attn_bias) + x = x + ffn_residual_func(x) + return attn_bias.split(x) + + def forward(self, x_or_x_list): + if isinstance(x_or_x_list, Tensor): + return super().forward(x_or_x_list) + elif isinstance(x_or_x_list, list): + assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage" + return self.forward_nested(x_or_x_list) + else: + raise AssertionError diff --git a/depth_anything_v2/dinov2_layers/drop_path.py b/depth_anything_v2/dinov2_layers/drop_path.py new file mode 100644 index 0000000..af05625 --- /dev/null +++ b/depth_anything_v2/dinov2_layers/drop_path.py @@ -0,0 +1,35 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# References: +# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py + + +from torch import nn + + +def drop_path(x, drop_prob: float = 0.0, training: bool = False): + if drop_prob == 0.0 or not training: + return x + keep_prob = 1 - drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0: + random_tensor.div_(keep_prob) + output = x * random_tensor + return output + + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) diff --git a/depth_anything_v2/dinov2_layers/layer_scale.py b/depth_anything_v2/dinov2_layers/layer_scale.py new file mode 100644 index 0000000..ca5daa5 --- /dev/null +++ b/depth_anything_v2/dinov2_layers/layer_scale.py @@ -0,0 +1,28 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110 + +from typing import Union + +import torch +from torch import Tensor +from torch import nn + + +class LayerScale(nn.Module): + def __init__( + self, + dim: int, + init_values: Union[float, Tensor] = 1e-5, + inplace: bool = False, + ) -> None: + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x: Tensor) -> Tensor: + return x.mul_(self.gamma) if self.inplace else x * self.gamma diff --git a/depth_anything_v2/dinov2_layers/mlp.py b/depth_anything_v2/dinov2_layers/mlp.py new file mode 100644 index 0000000..5e4b315 --- /dev/null +++ b/depth_anything_v2/dinov2_layers/mlp.py @@ -0,0 +1,41 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# References: +# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py + + +from typing import Callable, Optional + +from torch import Tensor, nn + + +class Mlp(nn.Module): + def __init__( + self, + in_features: int, + hidden_features: Optional[int] = None, + out_features: Optional[int] = None, + act_layer: Callable[..., nn.Module] = nn.GELU, + drop: float = 0.0, + bias: bool = True, + ) -> None: + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) + self.drop = nn.Dropout(drop) + + def forward(self, x: Tensor) -> Tensor: + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x diff --git a/depth_anything_v2/dinov2_layers/patch_embed.py b/depth_anything_v2/dinov2_layers/patch_embed.py new file mode 100644 index 0000000..574abe4 --- /dev/null +++ b/depth_anything_v2/dinov2_layers/patch_embed.py @@ -0,0 +1,89 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# References: +# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py +# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py + +from typing import Callable, Optional, Tuple, Union + +from torch import Tensor +import torch.nn as nn + + +def make_2tuple(x): + if isinstance(x, tuple): + assert len(x) == 2 + return x + + assert isinstance(x, int) + return (x, x) + + +class PatchEmbed(nn.Module): + """ + 2D image to patch embedding: (B,C,H,W) -> (B,N,D) + + Args: + img_size: Image size. + patch_size: Patch token size. + in_chans: Number of input image channels. + embed_dim: Number of linear projection output channels. + norm_layer: Normalization layer. + """ + + def __init__( + self, + img_size: Union[int, Tuple[int, int]] = 224, + patch_size: Union[int, Tuple[int, int]] = 16, + in_chans: int = 3, + embed_dim: int = 768, + norm_layer: Optional[Callable] = None, + flatten_embedding: bool = True, + ) -> None: + super().__init__() + + image_HW = make_2tuple(img_size) + patch_HW = make_2tuple(patch_size) + patch_grid_size = ( + image_HW[0] // patch_HW[0], + image_HW[1] // patch_HW[1], + ) + + self.img_size = image_HW + self.patch_size = patch_HW + self.patches_resolution = patch_grid_size + self.num_patches = patch_grid_size[0] * patch_grid_size[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.flatten_embedding = flatten_embedding + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + def forward(self, x: Tensor) -> Tensor: + _, _, H, W = x.shape + patch_H, patch_W = self.patch_size + + assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}" + assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}" + + x = self.proj(x) # B C H W + H, W = x.size(2), x.size(3) + x = x.flatten(2).transpose(1, 2) # B HW C + x = self.norm(x) + if not self.flatten_embedding: + x = x.reshape(-1, H, W, self.embed_dim) # B H W C + return x + + def flops(self) -> float: + Ho, Wo = self.patches_resolution + flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) + if self.norm is not None: + flops += Ho * Wo * self.embed_dim + return flops diff --git a/depth_anything_v2/dinov2_layers/swiglu_ffn.py b/depth_anything_v2/dinov2_layers/swiglu_ffn.py new file mode 100644 index 0000000..b3324b2 --- /dev/null +++ b/depth_anything_v2/dinov2_layers/swiglu_ffn.py @@ -0,0 +1,63 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Callable, Optional + +from torch import Tensor, nn +import torch.nn.functional as F + + +class SwiGLUFFN(nn.Module): + def __init__( + self, + in_features: int, + hidden_features: Optional[int] = None, + out_features: Optional[int] = None, + act_layer: Callable[..., nn.Module] = None, + drop: float = 0.0, + bias: bool = True, + ) -> None: + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) + self.w3 = nn.Linear(hidden_features, out_features, bias=bias) + + def forward(self, x: Tensor) -> Tensor: + x12 = self.w12(x) + x1, x2 = x12.chunk(2, dim=-1) + hidden = F.silu(x1) * x2 + return self.w3(hidden) + + +try: + from xformers.ops import SwiGLU + + XFORMERS_AVAILABLE = True +except ImportError: + SwiGLU = SwiGLUFFN + XFORMERS_AVAILABLE = False + + +class SwiGLUFFNFused(SwiGLU): + def __init__( + self, + in_features: int, + hidden_features: Optional[int] = None, + out_features: Optional[int] = None, + act_layer: Callable[..., nn.Module] = None, + drop: float = 0.0, + bias: bool = True, + ) -> None: + out_features = out_features or in_features + hidden_features = hidden_features or in_features + hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 + super().__init__( + in_features=in_features, + hidden_features=hidden_features, + out_features=out_features, + bias=bias, + ) diff --git a/depth_anything_v2/dpt.py b/depth_anything_v2/dpt.py new file mode 100644 index 0000000..18d3e6f --- /dev/null +++ b/depth_anything_v2/dpt.py @@ -0,0 +1,221 @@ +import cv2 +import torch +import torch.nn as nn +import torch.nn.functional as F +from torchvision.transforms import Compose + +from .dinov2 import DINOv2 +from .util.blocks import FeatureFusionBlock, _make_scratch +from .util.transform import Resize, NormalizeImage, PrepareForNet + + +def _make_fusion_block(features, use_bn, size=None): + return FeatureFusionBlock( + features, + nn.ReLU(False), + deconv=False, + bn=use_bn, + expand=False, + align_corners=True, + size=size, + ) + + +class ConvBlock(nn.Module): + def __init__(self, in_feature, out_feature): + super().__init__() + + self.conv_block = nn.Sequential( + nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1), + nn.BatchNorm2d(out_feature), + nn.ReLU(True) + ) + + def forward(self, x): + return self.conv_block(x) + + +class DPTHead(nn.Module): + def __init__( + self, + in_channels, + features=256, + use_bn=False, + out_channels=[256, 512, 1024, 1024], + use_clstoken=False + ): + super(DPTHead, self).__init__() + + self.use_clstoken = use_clstoken + + self.projects = nn.ModuleList([ + nn.Conv2d( + in_channels=in_channels, + out_channels=out_channel, + kernel_size=1, + stride=1, + padding=0, + ) for out_channel in out_channels + ]) + + self.resize_layers = nn.ModuleList([ + nn.ConvTranspose2d( + in_channels=out_channels[0], + out_channels=out_channels[0], + kernel_size=4, + stride=4, + padding=0), + nn.ConvTranspose2d( + in_channels=out_channels[1], + out_channels=out_channels[1], + kernel_size=2, + stride=2, + padding=0), + nn.Identity(), + nn.Conv2d( + in_channels=out_channels[3], + out_channels=out_channels[3], + kernel_size=3, + stride=2, + padding=1) + ]) + + if use_clstoken: + self.readout_projects = nn.ModuleList() + for _ in range(len(self.projects)): + self.readout_projects.append( + nn.Sequential( + nn.Linear(2 * in_channels, in_channels), + nn.GELU())) + + self.scratch = _make_scratch( + out_channels, + features, + groups=1, + expand=False, + ) + + self.scratch.stem_transpose = None + + self.scratch.refinenet1 = _make_fusion_block(features, use_bn) + self.scratch.refinenet2 = _make_fusion_block(features, use_bn) + self.scratch.refinenet3 = _make_fusion_block(features, use_bn) + self.scratch.refinenet4 = _make_fusion_block(features, use_bn) + + head_features_1 = features + head_features_2 = 32 + + self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1) + self.scratch.output_conv2 = nn.Sequential( + nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), + nn.ReLU(True), + nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), + nn.ReLU(True), + nn.Identity(), + ) + + def forward(self, out_features, patch_h, patch_w): + out = [] + for i, x in enumerate(out_features): + if self.use_clstoken: + x, cls_token = x[0], x[1] + readout = cls_token.unsqueeze(1).expand_as(x) + x = self.readout_projects[i](torch.cat((x, readout), -1)) + else: + x = x[0] + + x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) + + x = self.projects[i](x) + x = self.resize_layers[i](x) + + out.append(x) + + layer_1, layer_2, layer_3, layer_4 = out + + layer_1_rn = self.scratch.layer1_rn(layer_1) + layer_2_rn = self.scratch.layer2_rn(layer_2) + layer_3_rn = self.scratch.layer3_rn(layer_3) + layer_4_rn = self.scratch.layer4_rn(layer_4) + + path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) + path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) + path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) + path_1 = self.scratch.refinenet1(path_2, layer_1_rn) + + out = self.scratch.output_conv1(path_1) + out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True) + out = self.scratch.output_conv2(out) + + return out + + +class DepthAnythingV2(nn.Module): + def __init__( + self, + encoder='vitl', + features=256, + out_channels=[256, 512, 1024, 1024], + use_bn=False, + use_clstoken=False + ): + super(DepthAnythingV2, self).__init__() + + self.intermediate_layer_idx = { + 'vits': [2, 5, 8, 11], + 'vitb': [2, 5, 8, 11], + 'vitl': [4, 11, 17, 23], + 'vitg': [9, 19, 29, 39] + } + + self.encoder = encoder + self.pretrained = DINOv2(model_name=encoder) + + self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken) + + def forward(self, x): + patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14 + + features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True) + + depth = self.depth_head(features, patch_h, patch_w) + depth = F.relu(depth) + + return depth.squeeze(1) + + @torch.no_grad() + def infer_image(self, raw_image, input_size=518): + image, (h, w) = self.image2tensor(raw_image, input_size) + + depth = self.forward(image) + + depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0] + + return depth.cpu().numpy() + + def image2tensor(self, raw_image, input_size=518): + transform = Compose([ + Resize( + width=input_size, + height=input_size, + resize_target=False, + keep_aspect_ratio=True, + ensure_multiple_of=14, + resize_method='lower_bound', + image_interpolation_method=cv2.INTER_CUBIC, + ), + NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), + PrepareForNet(), + ]) + + h, w = raw_image.shape[:2] + + image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0 + + image = transform({'image': image})['image'] + image = torch.from_numpy(image).unsqueeze(0) + + DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' + image = image.to(DEVICE) + + return image, (h, w) diff --git a/depth_anything_v2/util/blocks.py b/depth_anything_v2/util/blocks.py new file mode 100644 index 0000000..382ea18 --- /dev/null +++ b/depth_anything_v2/util/blocks.py @@ -0,0 +1,148 @@ +import torch.nn as nn + + +def _make_scratch(in_shape, out_shape, groups=1, expand=False): + scratch = nn.Module() + + out_shape1 = out_shape + out_shape2 = out_shape + out_shape3 = out_shape + if len(in_shape) >= 4: + out_shape4 = out_shape + + if expand: + out_shape1 = out_shape + out_shape2 = out_shape * 2 + out_shape3 = out_shape * 4 + if len(in_shape) >= 4: + out_shape4 = out_shape * 8 + + scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups) + scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups) + scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups) + if len(in_shape) >= 4: + scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups) + + return scratch + + +class ResidualConvUnit(nn.Module): + """Residual convolution module. + """ + + def __init__(self, features, activation, bn): + """Init. + + Args: + features (int): number of features + """ + super().__init__() + + self.bn = bn + + self.groups=1 + + self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) + + self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) + + if self.bn == True: + self.bn1 = nn.BatchNorm2d(features) + self.bn2 = nn.BatchNorm2d(features) + + self.activation = activation + + self.skip_add = nn.quantized.FloatFunctional() + + def forward(self, x): + """Forward pass. + + Args: + x (tensor): input + + Returns: + tensor: output + """ + + out = self.activation(x) + out = self.conv1(out) + if self.bn == True: + out = self.bn1(out) + + out = self.activation(out) + out = self.conv2(out) + if self.bn == True: + out = self.bn2(out) + + if self.groups > 1: + out = self.conv_merge(out) + + return self.skip_add.add(out, x) + + +class FeatureFusionBlock(nn.Module): + """Feature fusion block. + """ + + def __init__( + self, + features, + activation, + deconv=False, + bn=False, + expand=False, + align_corners=True, + size=None + ): + """Init. + + Args: + features (int): number of features + """ + super(FeatureFusionBlock, self).__init__() + + self.deconv = deconv + self.align_corners = align_corners + + self.groups=1 + + self.expand = expand + out_features = features + if self.expand == True: + out_features = features // 2 + + self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) + + self.resConfUnit1 = ResidualConvUnit(features, activation, bn) + self.resConfUnit2 = ResidualConvUnit(features, activation, bn) + + self.skip_add = nn.quantized.FloatFunctional() + + self.size=size + + def forward(self, *xs, size=None): + """Forward pass. + + Returns: + tensor: output + """ + output = xs[0] + + if len(xs) == 2: + res = self.resConfUnit1(xs[1]) + output = self.skip_add.add(output, res) + + output = self.resConfUnit2(output) + + if (size is None) and (self.size is None): + modifier = {"scale_factor": 2} + elif size is None: + modifier = {"size": self.size} + else: + modifier = {"size": size} + + output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners) + + output = self.out_conv(output) + + return output diff --git a/depth_anything_v2/util/transform.py b/depth_anything_v2/util/transform.py new file mode 100644 index 0000000..b14aacd --- /dev/null +++ b/depth_anything_v2/util/transform.py @@ -0,0 +1,158 @@ +import numpy as np +import cv2 + + +class Resize(object): + """Resize sample to given size (width, height). + """ + + def __init__( + self, + width, + height, + resize_target=True, + keep_aspect_ratio=False, + ensure_multiple_of=1, + resize_method="lower_bound", + image_interpolation_method=cv2.INTER_AREA, + ): + """Init. + + Args: + width (int): desired output width + height (int): desired output height + resize_target (bool, optional): + True: Resize the full sample (image, mask, target). + False: Resize image only. + Defaults to True. + keep_aspect_ratio (bool, optional): + True: Keep the aspect ratio of the input sample. + Output sample might not have the given width and height, and + resize behaviour depends on the parameter 'resize_method'. + Defaults to False. + ensure_multiple_of (int, optional): + Output width and height is constrained to be multiple of this parameter. + Defaults to 1. + resize_method (str, optional): + "lower_bound": Output will be at least as large as the given size. + "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.) + "minimal": Scale as least as possible. (Output size might be smaller than given size.) + Defaults to "lower_bound". + """ + self.__width = width + self.__height = height + + self.__resize_target = resize_target + self.__keep_aspect_ratio = keep_aspect_ratio + self.__multiple_of = ensure_multiple_of + self.__resize_method = resize_method + self.__image_interpolation_method = image_interpolation_method + + def constrain_to_multiple_of(self, x, min_val=0, max_val=None): + y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) + + if max_val is not None and y > max_val: + y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int) + + if y < min_val: + y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int) + + return y + + def get_size(self, width, height): + # determine new height and width + scale_height = self.__height / height + scale_width = self.__width / width + + if self.__keep_aspect_ratio: + if self.__resize_method == "lower_bound": + # scale such that output size is lower bound + if scale_width > scale_height: + # fit width + scale_height = scale_width + else: + # fit height + scale_width = scale_height + elif self.__resize_method == "upper_bound": + # scale such that output size is upper bound + if scale_width < scale_height: + # fit width + scale_height = scale_width + else: + # fit height + scale_width = scale_height + elif self.__resize_method == "minimal": + # scale as least as possbile + if abs(1 - scale_width) < abs(1 - scale_height): + # fit width + scale_height = scale_width + else: + # fit height + scale_width = scale_height + else: + raise ValueError(f"resize_method {self.__resize_method} not implemented") + + if self.__resize_method == "lower_bound": + new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height) + new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width) + elif self.__resize_method == "upper_bound": + new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height) + new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width) + elif self.__resize_method == "minimal": + new_height = self.constrain_to_multiple_of(scale_height * height) + new_width = self.constrain_to_multiple_of(scale_width * width) + else: + raise ValueError(f"resize_method {self.__resize_method} not implemented") + + return (new_width, new_height) + + def __call__(self, sample): + width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0]) + + # resize sample + sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method) + + if self.__resize_target: + if "depth" in sample: + sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST) + + if "mask" in sample: + sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST) + + return sample + + +class NormalizeImage(object): + """Normlize image by given mean and std. + """ + + def __init__(self, mean, std): + self.__mean = mean + self.__std = std + + def __call__(self, sample): + sample["image"] = (sample["image"] - self.__mean) / self.__std + + return sample + + +class PrepareForNet(object): + """Prepare sample for usage as network input. + """ + + def __init__(self): + pass + + def __call__(self, sample): + image = np.transpose(sample["image"], (2, 0, 1)) + sample["image"] = np.ascontiguousarray(image).astype(np.float32) + + if "depth" in sample: + depth = sample["depth"].astype(np.float32) + sample["depth"] = np.ascontiguousarray(depth) + + if "mask" in sample: + sample["mask"] = sample["mask"].astype(np.float32) + sample["mask"] = np.ascontiguousarray(sample["mask"]) + + return sample \ No newline at end of file diff --git a/info_core/MyQtClass.py b/info_core/MyQtClass.py index b4ab4d7..33f5764 100644 --- a/info_core/MyQtClass.py +++ b/info_core/MyQtClass.py @@ -740,8 +740,8 @@ class FolderDropWidget(QWidget): def init_ui(self): main_layout = QVBoxLayout() - main_layout.setSpacing(15) - main_layout.setContentsMargins(15, 15, 15, 15) + main_layout.setSpacing(5) + main_layout.setContentsMargins(0, 0, 0, 0) # 顶部按钮区域 btn_layout = QHBoxLayout() @@ -750,12 +750,24 @@ class FolderDropWidget(QWidget): self.reset_btn.setFixedSize(120, 40) self.reset_btn.setVisible(False) - self.clear_btn = QPushButton("清空选中机组列表") + self.clear_btn = QPushButton("清空") self.clear_btn.clicked.connect(self.clear_selected) self.clear_btn.setFixedSize(120, 40) self.clear_btn.setVisible(False) + self.full_select_btn = QPushButton("全选") + self.full_select_btn.clicked.connect(self.select_all_folders) + self.full_select_btn.setFixedSize(120, 40) + self.full_select_btn.setVisible(False) + + # 添加返回按钮 + self.back_btn = QPushButton("返回项目选择") + self.back_btn.clicked.connect(lambda: (self.stacked_layout.setCurrentIndex(1) or self.clear_selected() or self.reset_btn.setVisible(True) or self.back_btn.setVisible(False))) + self.back_btn.setVisible(False) + btn_layout.addWidget(self.reset_btn) + btn_layout.addWidget(self.back_btn) + btn_layout.addWidget(self.full_select_btn) btn_layout.addWidget(self.clear_btn) btn_layout.addStretch() main_layout.addLayout(btn_layout) @@ -776,6 +788,8 @@ class FolderDropWidget(QWidget): # 状态2: 显示第一层文件夹 (项目选择) self.level1_container = QWidget() level1_main_layout = QVBoxLayout() + level1_main_layout.setSpacing(0) + level1_main_layout.setContentsMargins(0, 0, 0, 0) # 添加状态标签 self.level1_title = QLabel("项目选择") @@ -797,6 +811,8 @@ class FolderDropWidget(QWidget): # 状态3: 显示第二层文件夹 (机组选择) self.level2_container = QWidget() level2_main_layout = QVBoxLayout() + level2_main_layout.setSpacing(0) + level2_main_layout.setContentsMargins(0, 0, 0, 0) # 添加状态标签 self.level2_title = QLabel("机组选择") @@ -811,11 +827,6 @@ class FolderDropWidget(QWidget): self.level2_list.setSpacing(10) level2_main_layout.addWidget(self.level2_list) - # 添加返回按钮 - self.back_btn = QPushButton("返回项目选择") - self.back_btn.clicked.connect(lambda: self.stacked_layout.setCurrentIndex(1)) - level2_main_layout.addWidget(self.back_btn) - self.level2_container.setLayout(level2_main_layout) self.stacked_layout.addWidget(self.level2_container) @@ -836,6 +847,13 @@ class FolderDropWidget(QWidget): self.setLayout(main_layout) + def select_all_folders(self): + self.selected_folders.update( + set(item.data(Qt.ItemDataRole.UserRole) for item in self.level2_list.findItems("", Qt.MatchFlag.MatchContains)) + ) + self.update_checkbox_states() + self.selection_changed.emit(self.get_selected_folders()) + def apply_styles(self): self.prompt_label.setStyleSheet(f""" {PATH_DISPLAY_STYLE} @@ -872,6 +890,7 @@ class FolderDropWidget(QWidget): """) self.selected_group.setStyleSheet(GROUP_BOX_STYLE) + self.full_select_btn.setStyleSheet(BUTTON_STYLE) self.reset_btn.setStyleSheet(BUTTON_STYLE) self.clear_btn.setStyleSheet(BUTTON_STYLE) self.back_btn.setStyleSheet(BUTTON_STYLE) @@ -890,6 +909,7 @@ class FolderDropWidget(QWidget): self.stacked_layout.setCurrentIndex(0) # 显示提示 self.reset_btn.setVisible(False) self.clear_btn.setVisible(False) + self.back_btn.setVisible(False) self.selected_group.setVisible(False) self.selection_changed.emit([]) @@ -904,7 +924,9 @@ class FolderDropWidget(QWidget): self.load_level1_folders(path) self.stacked_layout.setCurrentIndex(1) # 显示第一层 self.reset_btn.setVisible(True) + self.back_btn.setVisible(False) self.clear_btn.setVisible(True) + self.full_select_btn.setVisible(True) self.selected_group.setVisible(True) def dragEnterEvent(self, event: QDragEnterEvent): @@ -933,6 +955,8 @@ class FolderDropWidget(QWidget): def show_level2_folders(self, item): self.level2_list.clear() + self.reset_btn.setVisible(False) + self.back_btn.setVisible(True) folder_path = item.data(Qt.ItemDataRole.UserRole) for sub_item in os.listdir(folder_path): diff --git a/info_core/defines.py b/info_core/defines.py index 5485e6b..a40ac78 100644 --- a/info_core/defines.py +++ b/info_core/defines.py @@ -84,7 +84,7 @@ COMBO_BOX_STYLE = f""" GROUP_BOX_MIN_WIDTH = 300 GROUP_BOX_MIN_HEIGHT = 120 GROUP_BOX_SPACING = 5 -GROUP_BOX_MARGINS = (5, 5, 5, 5) +GROUP_BOX_MARGINS = (1, 1, 1, 1) GROUP_BOX_STYLE = f""" QGroupBox {{ font-family: "{FONT_FAMILY}"; diff --git a/main.py b/main.py index cd4011c..cfba497 100644 --- a/main.py +++ b/main.py @@ -1,127 +1,5 @@ -from PySide6.QtWidgets import (QApplication, QMainWindow, QWidget, QGridLayout, - QPushButton, QSizePolicy, QSplitter, QToolBar) -from PySide6.QtGui import QFontDatabase -from PySide6.QtCore import Signal, Qt - -import os -from info_core.defines import * -from info_core.MyQtClass import ConfigComboBoxGroup, FolderDropWidget, DraggableLine - - -class ReportGeneratorUI(QMainWindow): - send_baogao_choose_info = Signal(list[str]) - - def __init__(self): - super().__init__() - # 加载字体 - self.load_font() - - # 设置窗口属性 - self.setWindowTitle("报告生成器") - self.setMinimumSize(WINDOW_MIN_WIDTH, WINDOW_MIN_HEIGHT) - - # 主窗口部件 - self.central_widget = QWidget() - self.setCentralWidget(self.central_widget) - - # 主布局 - self.main_layout = QGridLayout(self.central_widget) - self.main_layout.setSpacing(MAIN_LAYOUT_SPACING) - self.main_layout.setContentsMargins(*MAIN_LAYOUT_MARGINS) - - # 初始化UI - self.init_ui() - - - def load_font(self): - """加载自定义字体""" - if os.path.exists(FONT_PATH): - font_id = QFontDatabase.addApplicationFont(FONT_PATH) - if font_id == -1: - print("字体加载失败,将使用系统默认字体") - else: - print(f"字体文件未找到: {FONT_PATH},将使用系统默认字体") - - def init_ui(self): - """初始化所有UI组件""" - # 第一行:项目信息和人员配置 - self.project_group = ConfigComboBoxGroup("项目基本信息") - self.staff_group = ConfigComboBoxGroup("单次检查配置信息", is_project=False) - # 第二行:导入图片路径、填写机组信息 - self.picture_group = FolderDropWidget() - # self.image_analysis = - # self.main_layout.addWidget(self.image_analysis, 1, 1) - # 第三行:生成报告按钮(跨两列) - self.create_generate_button() - self.generate_btn.setEnabled(False) - - # 创建一个垂直分割器 - self.splitter = QSplitter(Qt.Vertical) - self.splitter.setStyleSheet(SPLITTER_STYLE) - # 创建顶部和底部容器 - top_container = QWidget() - top_container.setLayout(QGridLayout()) - top_container.layout().addWidget(self.project_group, 0, 0) - top_container.layout().addWidget(self.staff_group, 0, 1) - - middle_container = QWidget() - middle_container.setLayout(QGridLayout()) - middle_container.layout().addWidget(self.picture_group, 0, 0) - - # 添加部件到分割器 - self.splitter.addWidget(top_container) - self.splitter.addWidget(middle_container) - - # 设置主布局 - self.main_layout.addWidget(self.splitter, 0, 0, 2, 2) # 占据前两行两列 - self.main_layout.addWidget(self.generate_btn, 2, 0, 1, 2) - - # 设置分割器初始比例 - self.splitter.setStretchFactor(0, 1) - self.splitter.setStretchFactor(1, 4) - - self.toolbar = QToolBar() - self.addToolBar(self.toolbar) - self.toolbar.setMovable(False) - self.toolbar.setFloatable(False) - new_action = self.toolbar.addAction("重置布局比例") - self.toolbar.addSeparator() - new_action.triggered.connect(self.reset_splitter) - - def reset_splitter(self): - """重置分割器的比例""" - total_size = sum(self.splitter.sizes()) # 获取当前总大小 - self.splitter.setSizes([ - int(total_size * 0.2), # 第一部分占 20%(比例 1:4) - int(total_size * 0.8) # 第二部分占 80% - ]) - - def on_generate_path_selected(self, path): - self.generate_btn.setEnabled(True) - - # search_file_list = [] - # if self.image_analysis.check_is_waibu: - # search_file_list.append("外汇总") - # if self.image_analysis.check_is_neibu: - # search_file_list.append("内汇总") - # if self.image_analysis.check_is_fanglei: - # search_file_list.append("防汇总") - # self.send_baogao_choose_info.emit(search_file_list) - - def create_button(self, text): - """创建统一风格的按钮""" - btn = QPushButton(text) - btn.setStyleSheet(BUTTON_STYLE) - btn.setFixedSize(BUTTON_WIDTH, BUTTON_HEIGHT) - return btn - - def create_generate_button(self): - """创建生成报告按钮""" - self.generate_btn = QPushButton("生成报告") - self.generate_btn.setStyleSheet(PRIMARY_BUTTON_STYLE) - self.generate_btn.setFixedHeight(50) - self.generate_btn.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed) - +from PySide6.QtWidgets import QApplication +from MainWindow.mainwindow import ReportGeneratorUI if __name__ == "__main__": app = QApplication([]) diff --git a/tool/lighter.py b/tool/lighter.py new file mode 100644 index 0000000..4e36999 --- /dev/null +++ b/tool/lighter.py @@ -0,0 +1,176 @@ +import cv2 +import numpy as np +# import rawpy +# from PIL import Image +# from tqdm import tqdm +# import tkinter as tk +#from tkinter import filedialog +#from concurrent.futures import ThreadPoolExecutor +#import argparse +#import os +#import torch +#from depth_anything_v2.dpt import DepthAnythingV2 +#from utils import specify_name_group_blade,get_name +#parser = argparse.ArgumentParser(description='Depth Anything V2') +# parser.add_argument('--input-size', type=int, default=518) +# parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg']) +# args = parser.parse_args() + +def extraction_win_lamina_mask(raw_image, depth_anything): + # 前面读的都是RGB图像,深度估计需要BGR,即下面是把RGB→BGR + raw_image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) + + depth = depth_anything.infer_image(raw_image) + + depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 + depth = depth.astype(np.uint8) + + _, otsu_mask = cv2.threshold(depth, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) + return otsu_mask + + +def check_overexposure(image, lamina_mask,threshold): + """ + 检查图像中是否有过曝区域 + :param image: 输入图像 + :param threshold: 亮度值的阈值,像素值超过该值则认为是过曝区域 + :return: 一个二值图像,过曝区域为白色,其它区域为黑色 + """ + # 转换为浮动数据类型并归一化 + image_float = image.astype(np.float32) + + # 获取每个像素的亮度值(可以使用 YUV 或 RGB 亮度) + gray_image = cv2.cvtColor(image_float, cv2.COLOR_BGR2GRAY) + + # 标记过曝区域,亮度大于阈值的像素为过曝区域 + overexposure_mask = gray_image > threshold + + overexposure_mask = (lamina_mask == 255) & overexposure_mask #只取叶片的亮光区mask + + overexposure_number = np.sum(overexposure_mask * 1) + overexposed_pixels = gray_image[overexposure_mask] + # 计算曝光区域的平均亮度 + if overexposed_pixels.size > 0: + avg_overexposed_value = np.mean(overexposed_pixels) + else: + avg_overexposed_value = 0 # 如果没有曝光区域,返回 0 + + return overexposure_mask, avg_overexposed_value,overexposure_number + +def check_shawn(image,lamina_mask, threshold): + """ + 检查图像中是否有阴影区域 + :param image: 输入图像 + :param threshold: 亮度值的阈值,像素值小于该值则认为是过阴影域 + :return: 一个二值图像,过曝区域为白色,其它区域为黑色 + """ + + # 转换为浮动数据类型并归一化 + image_float = image.astype(np.float32) + # 获取每个像素的亮度值(可以使用 YUV 或 RGB 亮度) + gray_image = cv2.cvtColor(image_float, cv2.COLOR_BGR2GRAY) + # 标记阴影区域,亮度小于阈值的像素为阴影区域 + shawn_mask = gray_image < threshold + + shawn_mask = (lamina_mask == 255) & shawn_mask + + shawn_number = np.sum(shawn_mask * 1) + shawn_pixels = gray_image[shawn_mask] + # 计算阴影区域的平均亮度 + if shawn_pixels.size > 0: + avg_shawn_value = np.mean(shawn_pixels) + else: + avg_shawn_value = 0 + + return shawn_mask, avg_shawn_value,shawn_number + +def smooth_overexposed_regions(image, overexposure_mask, kernel_size=(15, 15)): + """ + 对过曝区域进行平滑处理,修复与周围区域的过渡 + :param image: 输入图像 + :param overexposure_mask: 过曝区域的掩码 + :param kernel_size: 高斯核大小 + :return: 平滑过曝区域后的图像 + """ + # 使用高斯模糊平滑过曝区域和周围区域 + smoothed_image = cv2.GaussianBlur(image, kernel_size, 0) + + # 将平滑后的图像和原始图像合成,修复过曝区域 + fixed_image = np.where(overexposure_mask[..., None] == 255, image,smoothed_image) + + return fixed_image + +def bilateral_filter_adjustment(image, high_light_mask, d=15, sigma_color=75, sigma_space=75): + """ + 使用双边滤波器平滑高光区域与周围区域的过渡 + :param image: 输入图像 + :param high_light_mask: 高光区域的掩码 + :param d: 邻域的直径 + :param sigma_color: 颜色空间的标准差 + :param sigma_space: 坐标空间的标准差 + :return: 平滑后的图像 + """ + # 对整个图像应用双边滤波 + filtered_image = cv2.bilateralFilter(image, d, sigma_color, sigma_space) + + # 合成平滑后的图像和原图,保留非高光部分 + final_image = np.where(high_light_mask[..., None] == 0, image, filtered_image) + + return final_image + +def adjust_highlights_shadows(image, threshold_shawn,threshold, depth_anything): + + lamina_mask = extraction_win_lamina_mask(image, depth_anything) + + shawn_mask,avg_shawn_value,shawn_number = check_shawn(image,lamina_mask,threshold_shawn) + # 调整亮度,gamma < 1 时变亮,gamma > 1 时变暗 + gamma = 1 - (threshold_shawn-avg_shawn_value)/255.0 + # print('阴影区调整的gama: '+str(gamma))#+str('\n')) + lookup_table = np.array([((i / 255.0) ** gamma) * 255 for i in range(256)]).astype('uint8') + # 应用 gamma 校正 + if shawn_number !=0: + image[shawn_mask == True] = cv2.LUT(image[shawn_mask == True], lookup_table) + gamma_corrected_image = image + else: + gamma_corrected_image = image + #gamma_corrected_image = cv2.LUT(image, lookup_table) + + #寻找过爆区域 + overexposure_mask,avg_overexposed_value,overexposure_number = check_overexposure(gamma_corrected_image,lamina_mask,threshold) + reduction_factor = 1-(avg_overexposed_value-threshold) / 255 + #reduction_factor = (avg_overexposed_value/255)*scale + # print("降低曝光区比例:" + str(reduction_factor)) + + # 调整亮度,gamma < 1 时变亮(越小越亮),gamma > 1 时变暗(越大越暗), + print((1+reduction_factor)) + lookup_table = np.array([((i / 255.0) ** (1+reduction_factor)) * 255 for i in range(256)]).astype('uint8') + # 应用 gamma 校正 + if overexposure_number !=0: + gamma_corrected_image[overexposure_mask == True] = cv2.LUT(gamma_corrected_image[overexposure_mask == True], lookup_table) + + + #gamma_corrected_image[overexposure_mask == True] = np.clip(gamma_corrected_image[overexposure_mask == True] * reduction_factor, 0, 255) + + + #smoothed_image = smooth_overexposed_regions(gamma_corrected_image, overexposure_mask) + #smoothed_image = bilateral_filter_adjustment(gamma_corrected_image, overexposure_mask, d=15, sigma_color=75, sigma_space=75) + + return gamma_corrected_image + +# path=r'/home/dtyx/下载/1_涂层损伤_叶尖3m_2m_一般_紧急_一般_尽快打磨维修.jpg' +# from time import time +# if __name__ == "__main__": +# # input_dir = input("请输入处理图片路径: ") +# # output_dir = input("请输入保存图片路径: ") +# time_start = time() +# imgpath = path +# img = cv2.imdecode(np.fromfile(imgpath, dtype=np.uint8), cv2.IMREAD_COLOR) +# cv2.imshow('img',cv2.resize(img,(800,600))) +# mask=adjust_highlights_shadows(img,180,253) +# mask=cv2.resize(mask,(800,600)) +# time_end = time() +# print("Time used:", time_end - time_start) +# cv2.imshow('mask',mask) +# cv2.waitKey(0) +# cv2.destroyAllWindows() +# # gamma = float(input("请输入 gamma 值: ")) \ No newline at end of file diff --git a/tool/model_start.py b/tool/model_start.py new file mode 100644 index 0000000..5db6d5d --- /dev/null +++ b/tool/model_start.py @@ -0,0 +1,18 @@ +import torch +from depth_anything_v2.dpt import DepthAnythingV2 + +def model_start(model_path): + DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' + model_configs = { + 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, + 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, + 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, + 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} + } + + depth_anything = DepthAnythingV2() + depth_anything.load_state_dict( + torch.load(f'{model_path}', map_location='cpu')) + depth_anything = depth_anything.to(DEVICE).eval() + print("model loaded") + return depth_anything \ No newline at end of file diff --git a/tool/process_image.py b/tool/process_image.py new file mode 100644 index 0000000..1ac5dab --- /dev/null +++ b/tool/process_image.py @@ -0,0 +1,141 @@ +import os +import numpy as np +import cv2 +from tool.lighter import adjust_highlights_shadows +from concurrent.futures import ThreadPoolExecutor +from PIL import Image +import piexif + +# parser = argparse.ArgumentParser(description='Depth Anything V2') +# parser.add_argument('--input-paths', type=str, nargs='+', required=True, +# help='输入文件夹列表(多个路径,用空格分隔)') +# parser.add_argument('--output-path', type=str, default='./output', +# help="按输出路径的结构输出处理好的图片") +# parser.add_argument('--model-path', type=str, default='./model/depth_anything_v2_vitl.pth', +# help='模型路径') +# args = parser.parse_args() + + +def process_single_image(img_path, depth_anything): + """处理单个图片 + Args: + img_path: 图片路径 + Returns: + tuple: (处理后的图片numpy数组, 原始图片路径) + """ + # 使用OpenCV读取图片 + img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), cv2.IMREAD_COLOR) + if img is None: + raise ValueError(f"无法读取图片: {img_path}") + + # 处理图片 - 这里假设adjust_highlights_shadows能处理OpenCV格式的图片 + processed_img = adjust_highlights_shadows(img, 180, 253, depth_anything) + return processed_img, img_path + +def save_image_with_exif(input_path, output_path, processed_img): + """保存图片并保留EXIF信息 + Args: + input_path: 原始图片路径 + output_path: 输出图片路径 + processed_img: 处理后的numpy数组图片 + """ + # 确保输出目录存在 + os.makedirs(os.path.dirname(output_path), exist_ok=True) + + # 读取原始图片的EXIF信息 + exif_dict = None + try: + with exif_lock: # 使用锁防止多线程同时读取EXIF + with Image.open(input_path) as img: + if 'exif' in img.info: + exif_dict = piexif.load(img.info['exif']) + except Exception as e: + print(f"Warning: 无法读取 {input_path} 的EXIF信息: {str(e)}") + + # 将OpenCV格式转换为PIL格式以便保存EXIF + processed_img_rgb = cv2.cvtColor(processed_img, cv2.COLOR_BGR2RGB) + pil_img = Image.fromarray(processed_img_rgb) + + # 保存图片 + try: + if exif_dict: + pil_img.save(output_path, exif=piexif.dump(exif_dict)) + else: + pil_img.save(output_path) + except Exception as e: + print(f"Error: 无法保存图片 {output_path}: {str(e)}") + raise + +def process_single_file(input_path, output_root, input_base, depth_anything): + """处理单个文件""" + try: + # 计算相对路径以保持文件夹结构 + rel_path = os.path.relpath(os.path.dirname(input_path), start=input_base) + output_dir = os.path.join(output_root, rel_path) + output_path = os.path.join(output_dir, os.path.basename(input_path)) + + # 处理图片 + processed_img, _ = process_single_image(input_path, depth_anything) + + # 保存图片 + save_image_with_exif(input_path, output_path, processed_img) + print(f"Processed and saved: {output_path}") + except Exception as e: + print(f"Error processing {input_path}: {str(e)}") + +def process_images(input_paths, output_root, depth_anything, workers=4): + """处理所有图片并保持原文件夹结构(多线程版本) + Args: + input_paths: 输入路径列表 + output_root: 输出根目录 + workers: 线程池大小 + """ + # 收集所有需要处理的文件 + all_files = [] + for input_path in input_paths: + for root, dirs, files in os.walk(input_path): + for file in files: + if file.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff')): + input_file_path = os.path.join(root, file) + all_files.append((input_file_path, input_path)) + + # 使用线程池处理文件 + with ThreadPoolExecutor(max_workers=workers) as executor: + futures = [] + for file_path, input_base in all_files: + futures.append( + executor.submit( + process_single_file, + file_path, + output_root, + input_base, + depth_anything + ) + ) + + # 等待所有任务完成 + for future in futures: + try: + future.result() + except Exception as e: + print(f"Error in processing: {str(e)}") +# if __name__ == '__main__': + # model_path = args.model_path + # input_paths = args.input_paths + # output_path = args.output_path + + # # 线程锁,防止多线程同时访问EXIF数据时出现问题 + # exif_lock = threading.Lock() + + # input_paths = ["/home/dtyx/桌面/yhh/ReportGenerator/测试数据/山东国华无棣风电场叶片外部数据/A1(31301)",] + # model_path = "./model/depth_anything_v2_vitl.pth" + # output_path = "./output" + # #启动模型 + # depth_anything = model_start(model_path) + # # 创建输出目录 + # os.makedirs(output_path, exist_ok=True) + # # 处理所有图片 + # process_images(input_paths, output_path, depth_anything) + + + diff --git a/原始数据预处理流程图.png b/原始数据预处理流程图.png new file mode 100644 index 0000000..7345afd Binary files /dev/null and b/原始数据预处理流程图.png differ